Advanced SearchSearch Tips
On the Variational Approach for Analyzing the Stability of Solutions of Evolution Equations
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 53, Issue 4,  2013, pp.661-680
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2013.53.4.680
 Title & Authors
On the Variational Approach for Analyzing the Stability of Solutions of Evolution Equations
Abdel-Gawad, Hamdy I.; Osman, M.S.;
  PDF(new window)
The eigenvalue problems arise in the analysis of stability of traveling waves or rest state solutions are currently dealt with, using the Evans function method. In the literature, it had been shown that, use of this method is not straightforward even in very simple examples. Here an extended "variational" method to solve the eigenvalue problem for the higher order dierential equations is suggested. The extended method is matched to the well known variational iteration method. The criteria for validity of the eigenfunctions and eigenvalues obtained is presented. Attention is focused to find eigenvalue and eigenfunction solutions of the Kuramoto-Slivashinsky and (K[p,q]) equation.
An extended variational method;Stability analysis-Traveling wave solutions Kuramoto-Sivashinsky equation;
 Cited by
Dynamic of DNA's possible impact on its damage, Mathematical Methods in the Applied Sciences, 2016, 39, 2, 168  crossref(new windwow)
Analysis of the generalized (2+1)-dimensional Nizhnik–Novikov–Veselov equations with variable coefficients in an inhomogeneous medium, Modern Physics Letters B, 2017, 31, 22, 1750135  crossref(new windwow)
Murray, J., Mathematical Biology, Second Edition. Springer, Berlin, 1993.

Kapral, R. and Showalter, K. (Eds), Chemical waves and Patterns, Kluwer, Doordrecht (1995).

Volpert, A. I. and Volpert, V. A., Traveling waves solutions of parabolic systems, Transl. Math. Mono. Amer Math. Soc. Providence 140(1994).

Field, R. J. and Burger, M., Oscillations and Traveling waves in Chemical Systems, J. Wiley, New York (1985).

Evans, J. Nerve axon equations (iii). Stability of the never impulse., Indiana Univ. Math. J. 22(1972), 577-593.

Evans, J. Nerve axon equations (iv). The stable and the unstable impulse., Indiana Univ. Math. J. 24(1975), 1169-1190.

Gardner, R. A. and Jones C. K. R. T. Traveling waves of perturbed diffusion equation arising in a phase field model., India Univ. Math. J. 39(1990), 1197-1222. crossref(new window)

Pego, R. and Weinstein, M. Eigenvalues and instability of solitary waves., Phil. Trans. R. Soc. Lond. A, 340(1992), 47-94. crossref(new window)

Nii, S. Stability of traveling multiple-front (multiple-back) wave solution of the Fitzhugh-Nagumo equations., SIAM. J. Math. Anal. 28(1997), 1094-1112. crossref(new window)

Afendikov, A. L. and Bridges, J. J. Instability of the Hocking-Stewartson pulse and its implications for three-dimensional, Proc. R. Soc. Lond. A. 457(2001), 257-272.

Reddy, S. C. and Trefethen, L. N., Pseudo spectra of the convection diffusion operators., SIAM. Appl. Math. 54(1994), 1634-1649. crossref(new window)

Alexander, J. C., Gardner, R. A. and Jones, C. K. R. T. A topological invariant arising in the stability analysis of traveling waves., J. Reine. Angew. Math. 410(1990), 167-212.

Nii, S. A topological proof of stability of N-front solutions of the Fitzhugh-Nagumo equations., J. Dynam. Diff. Eqns. 11(1999), 515-555. crossref(new window)

G. I. Sivashinsky, Acta. 4(1977), 1177.

Y. Kuramoto and Tsuzuki. Theor. Phys. 55(1976), 356-369. crossref(new window)

Y. Kuramoto and T. Yamada, Prog. Theo. Phys. 64 (1978), 346-367. crossref(new window)

Luwai Wazzan, A modified Tanh-Coth method for Solving the general Burgers-Fisher and The Kuramoto-Sivashinsky equations. Communications in Non Linear Science and Numerical Simulation, 14(2009), 2646-2652.

John Weiss, M.Tobar and G. Carnevale, The Painleve' for Partial Differential Equations, J. Math. Phy. 24(1983), 552.

Gui-qoing Xu, Zhi-bin Li, PDEP test: a package for the Painleve' test of nonlinear partial differential equations. Applied Mathematics and Computation, 169(2005), 1364-1379. crossref(new window)

K. K. Victor, B. B. Thomas and T. C. Kofane, On the exact solution of the Schafer-Wayne short pulse equation: WKI eigenvalue problem. J. Phys. A, 39(2007), 5585.

H. Sagan; Boundary and eigenvalue problems in mathematical physics, J. Wiley, (1989).

P. Rosenau and J. M. Hyman, Phys. Rev. Lett. 70 (1993), 564. crossref(new window)

P. Rosenau, Physica D, 123(1998), 525. crossref(new window)

M. Tatari and M. Dehghan, On the convergence of He's variational iteration method, J. comp. Appl. Math., 207 (2007), 121-128. crossref(new window)

He, J. H. Variational iteration method. Applied Mathematics and Computation., 114(1999), 699-708.

W.H.Enright, Verifying approximate solutions to di erential equations, Comput. Appl. Math.,185(2006), 203-211. crossref(new window)