JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Fourier Cosine and Sine Transformable Boehmians
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 54, Issue 1,  2014, pp.43-63
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2014.54.1.43
 Title & Authors
Fourier Cosine and Sine Transformable Boehmians
Ganesan, Chinnaraman; Roopkumar, Rajakumar;
  PDF(new window)
 Abstract
The range spaces of Fourier cosine and sine transforms on ([0, )) are characterized. Using Fourier cosine and sine type convolutions, Fourier cosine and sine transformable Boehmian spaces have been constructed, which properly contain ([0, )). The Fourier cosine and sine transforms are extended to these Boehmian spaces consistently and their properties are established.
 Keywords
Fourier cosine and sine transforms;convolution;Boehmians;
 Language
English
 Cited by
 References
1.
T. K. Boehme, The support of Mikusinski operators, Trans. Amer. Math. Soc., 176(1973), 319-334.

2.
V. A. Kakichev, N. X Thao and V. K. Tuan, On the generalized convolutions for Fourier cosine and sine transforms, East-West J. Math., 1(1998), 85-90.

3.
Y. Katznelson, An introduction to harmonic analysis, Dover, (1976).

4.
P. J. Miana, Convolutions, Fourier trigonometric transforms and applications, Integral Transform. Spec. Funct., 16(2005), 583-585. crossref(new window)

5.
J. Mikusinski and P. Mikusinski, Quotients de suites et leurs applications dans l'analyse fonctionnelle, C.R. Acad. Sc. Paris, 293, Serie I (1981), 463-464.

6.
P. Mikusinski, Convergence of Boehmians, Japan. J. Math. (N.S.), 9(1983), 159-179.

7.
P. Mikusinski, The Fourier transform of tempered Boehmians, Fourier Analysis, Lecture Notes in Pure and Appl. Math., Marcel Dekker, New York, (1994), 303-309.

8.
P. Mikusinski, Tempered Boehmians and ultra distributions, Proc. Amer. Math. Soc., 123(1995), 813-817. crossref(new window)

9.
P. Mikusinski, On fiexibility of Boehmians, Integral transform. Spec. Funct., 4(1996), 141-146. crossref(new window)

10.
W. Rudin, Real and complex analysis, McGraw-Hill Book Company, New York, 1987.

11.
I. N. Sneddon, The use of integral transforms, McGraw-Hill International Editions, New York, 1972.

12.
E. C. Titchmarsh, Introduction to the theory of Fourier integrals, Oxford University Press, 1948.