JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Weakly Semicommutative Rings and Strongly Regular Rings
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 54, Issue 1,  2014, pp.65-72
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2014.54.1.65
 Title & Authors
Weakly Semicommutative Rings and Strongly Regular Rings
Wang, Long; Wei, Junchao;
  PDF(new window)
 Abstract
A ring R is called weakly semicommutative ring if for any a,
 Keywords
weakly semicommutative rings;SF-rings;strongly regular rings;semicommutative rings;Abelian rings;
 Language
English
 Cited by
 References
1.
P. M. Cohn, Reversible rings, Bull. London Math. Soc., 31(1999), 641-648. crossref(new window)

2.
K. R. Goodearl, Ring Theory: Non-singular rings and modules, New York: Dekker.

3.
S. U. Hwang, On NCI rings, Bull. Korean Math. Soc., 44(2007), 215-223. crossref(new window)

4.
N. K. Kim, S. B. Nam and J. Y. Kim, On simple singular GP-injective modules, Comm. Algebra, 27(1999), 2087-2096. crossref(new window)

5.
T. Y. Lam and A. S. Dugas, Quasi-duo rings and stable range descent, Journal of pure and applied algebra, 195(2005), 243-259. crossref(new window)

6.
V. S. Ramamurthi, On the injectivity and flatness of certain cyclic modules, Proc. Amer. Math. Soc., 48(1975), 21-25. crossref(new window)

7.
M. B. Rege, On von Neumann regular rings and SF-rings, Math. Japonica, 31(1986), 927-936.

8.
Y. C. M. Roger, On von Neumann regular rings and V-rings, Math. J. Okayama Univ., 22(1980), 151-160.

9.
Y. C. M. Roger, On von Neumann regular rings, VIII, Comment Math. Univ. Carolinae, 23(1982), 427-442.

10.
Y. C. M. Roger, On von Neumann regular rings, XV, Acta Math. Vietnamica, 23(1988), 71-79.

11.
J. C. Wei, Simple singular Y J-injective modules, Southeast Asian Bull. Math., 31(2007), 1009-1018.

12.
J. C. Wei and J. H. Chen, Nil-injective rings, Intern. Electron. J. Algebra, 2(2007), 1-21.

13.
J. C. Wei and J. H. Chen, NPP rings, reduced rings and SNF rings, Intern. Electr. Jour. Algebra, 4(2008), 9-26.

14.
J. Zhang, SF-rings whose maximal essential left ideals are ideals, Advance in Math., 23(1994), 257-262.

15.
J. Zhang, A note on von Neumann regular rings, Southeast Asian Bull. Math., 22(1998), 231-235.

16.
J. Zhang and X. Du, Left SF-rings whose complement left ideals are ideals, Acta Math. Vietnamica, 17(1992), 157-159.

17.
J. Zhang and X. Du, Von Neumann regularity of SF-rings, Comm. Algebra, 21(1993), 2445-2451. crossref(new window)

18.
H. Zhou and X.Wang, Von Neumann regular rings and right SF-rings, Northeastern Math. J., 20(2004a), 75-78.

19.
H. Zhou and X. Wang, Von Neumann regular rings and SF-rings, J. Math. Reseach and Exposition (Chinese), 24(2004b), 679-683.

20.
H. Zhou, Left SF-rings and regular rings, Comm. Algebra, 35(2007), 3842-3850. crossref(new window)