Advanced SearchSearch Tips
A Cyclic Subnormal Completion of Complex Data
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 54, Issue 2,  2014, pp.157-163
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2014.54.2.157
 Title & Authors
A Cyclic Subnormal Completion of Complex Data
Jung, Il Bong; Li, Chunji; Park, Sun Hyun;
  PDF(new window)
For a finite subset of , where is the set of nonnegative integers, we say that a complex data in the unit disc of complex numbers has a cyclic subnormal completion if there exists a Hilbert space and a cyclic subnormal operator S on with a unit cyclic vector such that for all . In this note, we obtain some sufficient conditions for a cyclic subnormal completion of , where is a finite subset of .
subnormal completion;cyclic vector;truncated moment matrix;flat extension;
 Cited by
J. Bram, Subnormal operators, Duke Math. J., 22(1955), 75-94. crossref(new window)

R. Curto and L. Fialkow, Recursively generated weighted shifts and the subnormal completion problem, I, Integr. Equ. Oper. Theory, 17(1993), 202-246. crossref(new window)

R. Curto and L. Fialkow, Recursively generated weighted shifts and the subnormal completion problem, II, Integr. Equ. Oper. Theory, 18(1994), 369-426. crossref(new window)

R. Curto and L. Fialkow, Solution of the truncated complex moment problems for flat data, Memoirs Amer. Math. Soc., 568(1996).

R. Curto and L. Fialkow, Flat extensions of positive moment matrices: recursively generated relations, Memoirs Amer. Math. Soc., 648(1998).

M. Embry, A generalization of the Halmos-Bram criterion for subnormality, Acta. Sci. Math., (Szeged) 31(1973), 61-64.

I. B. Jung, C. Li, and S. Park, Complex moment matrices via Halmos-Bram and Embry conditions, J. Korean Math. Soc., 44(2007), 949-970. crossref(new window)

I. B. Jung, E. Ko, C. Li and S. S. Park, Embry truncated complex moment problem, Linear Algebra Appl., 375(2003), 95-114. crossref(new window)

P. Halmos, Normal dilations and extensions of operators, Summa Bras. Math., 2(1950), 124-134.

C. Li and S. H. Lee, The quartic moment problem, J. Korean Math. Soc., 42(2005), 723-747. crossref(new window)

J. Stampfli, Which weighted shifts are subnormal? Pacific J. Math., 17(1966), 367-379. crossref(new window)