JOURNAL BROWSE
Search
Advanced SearchSearch Tips
The Structure of Maximal Ideal Space of Certain Banach Algebras of Vector-valued Functions
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 54, Issue 2,  2014, pp.189-195
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2014.54.2.189
 Title & Authors
The Structure of Maximal Ideal Space of Certain Banach Algebras of Vector-valued Functions
Shokri, Abbas Ali; Shokri, Ali;
  PDF(new window)
 Abstract
Let X be a compact metric space, B be a unital commutative Banach algebra and . In this paper, we first define the vector-valued (B-valued) -Lipschitz operator algebra (X, B) and then study its structure and characterize of its maximal ideal space.
 Keywords
Injective norm;Banach algebras;Isometrically isomorphic;Maximal ideal space;
 Language
English
 Cited by
 References
1.
W. G. Bade, P. C. Curtis and Dales, H. G., Amenability and weak amenability for Berurling and Lipschitz algebras, Proc. London. Math. Soc. (3), 55(2)(1987), 359-377.

2.
H. X. Cao, J. H. Zhang, and Z. B., Xu, Characterizations and extensions of Lipschitz-$\alpha$ operators, Acta Mathematica Sinica, English Series, 22(2006), 671-678.

3.
A. Ebadian, Prime ideals in Lipschitz algebras of finite differentable function, Honam Math. J., 22(2000), 21-30.

4.
A. Ebadian and A. A. Shokri, On the Lipschitz operator algebras, Archivum mathe-maticum (BRNO), 45(2)(2009), 213-222.

5.
T. G. Honary and H. Mahyar, Approximation in Lipschitz algebras, Quest. Math., 23(2000), 13-19. crossref(new window)

6.
J. A. Johnson, Lipschitz spaces, Pacific J. Math, 51(1974), 177-186. crossref(new window)

7.
V. Runde, Lectures on Amenability, Springer, 2002.

8.
D. R. Sherbert, Banach algebras of Lipschitz functions, Pacfic J. Math, 13(1963), 1387-1399. crossref(new window)

9.
D. R. Sherbert, The structure of ideals and point derivations in Banach algebras of Lipschitz functions, Trans. Amer. Math. Soc., 111(1964), 240-272. crossref(new window)

10.
N. Weaver, Lipschitz algebras, World Scientific Publishing Co., Inc., River Edge, NJ, 1999.

11.
N. Weaver, Subalgebras of little Lipschitz algebras, Pacfic J. Math., 173(1996), 283-293.