JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Poset Properties Determined by the Ideal - Based Zero-divisor Graph
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 54, Issue 2,  2014, pp.197-201
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2014.54.2.197
 Title & Authors
Poset Properties Determined by the Ideal - Based Zero-divisor Graph
Porselvi, Kasi; Elavarasan, Balasubramanian;
  PDF(new window)
 Abstract
In this paper, we study some properties of finite or infinite poset P determined by properties of the ideal based zero-divisor graph properties , for an ideal J of P.
 Keywords
Posets;ideals;prime ideals;graph;cycle and cut-set;
 Language
English
 Cited by
 References
1.
D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217(1999), 434-447. crossref(new window)

2.
I. Beck, Coloring of commutative rings, J. Algebra, 116(1988), 208-226. crossref(new window)

3.
J. A. Bondy and U. S. R. Murty, Graph theory with applications, North-Holland, Amsterdam, 1976.

4.
F. R. DeMeyer, T. McKenzie and K. Schneider, The zero-divisor graph of a commutative semigroups, Semigroup Forum, 65(2002), 206-214. crossref(new window)

5.
P. Dheena and B. Elavarasan, An ideal based-zero-divisor graph of 2-primal near-rings, Bull. Korean Math. Soc., 46(6)(2009), 1051-1060. crossref(new window)

6.
B. Elavarasan and K. Porselvi, An ldeal - based zero-divisor graph of posets, Commun. Korean Math. Soc., 28(1)(2013), 79-85. crossref(new window)

7.
H. R. Maimani, Median and Center of Zero-Divisor Graph of Commutative Semi-groups, Iran. J. Math. Sci. Inform., 3(2)(2008), 69-76.

8.
Radomr Hala and Marek Jukl, On beck's coloring of posets, Discrete Mathematics, 309(2009), 4584-4589. crossref(new window)

9.
Radomr Hala, On extensions of ideals in posets, Discrete Mathematics, 308(2008), 4972-4977. crossref(new window)

10.
S. P. Redmond, An ideal-based zero-divisor graph of a commutative ring, Comm. Algebra, 31(9)(2003), 4425-4443. crossref(new window)

11.
Tongsuo Wu and Dancheng Lu, Sub-semigroups determined by the zero-divisor graph, Discrete Mathematics, 308(2008), 5122-5135. crossref(new window)