JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Reflexive Index of a Family of Sets
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 54, Issue 2,  2014, pp.263-269
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2014.54.2.263
 Title & Authors
Reflexive Index of a Family of Sets
Zhao, Dongsheng;
  PDF(new window)
 Abstract
As a further study on reflexive families of subsets, we introduce the reflexive index for a family of subsets of a given set and show that the index of a finite family of subsets of a finite or countably infinite set is always finite. The reflexive indices of some special families are also considered.
 Keywords
reflexive families;reflexive index;endomapping;
 Language
English
 Cited by
1.
THE REFLEXIVITY INDEX OF A LATTICE OF SETS, Journal of the Australian Mathematical Society, 2014, 97, 02, 237  crossref(new windwow)
2.
Reflexive nests of finite subsets of a Banach space, Journal of Mathematical Analysis and Applications, 2014, 420, 2, 1468  crossref(new windwow)
3.
The reflexivity index of a finite distributive lattice of subspaces, Linear Algebra and its Applications, 2014, 455, 73  crossref(new windwow)
 References
1.
P. R. Halmos, Ten problems in Hilbert space, Bull. Amer. Math. Soc., 76(1970), 887-933. crossref(new window)

2.
P. R. Halmos, Reflexive lattices of subspaces, J. London Math. Soc., 4(1971), 257-263.

3.
K. J. Harrison and W.E. Longstaff, Automorphic images of commutative subspace lattices, Proc. Amer. Math. Soc., 296(1986), 217-228. crossref(new window)

4.
W. E. Longstaff, Strongly reflexive subspace lattices, J. London Math. Soc.,11(1975), 2:491-498.

5.
W. E. Longstaff, On lattices whose every realization on Hilbert space is reflexive, J. London Math. Soc., 37(1988), 2:499-508.

6.
W. E. Longstaff and O. Panaia, On the ranks of single elements of reflexive operator algebras, Proc. Amer. Math. Soc., 125(1997), 10:2875-2882. crossref(new window)

7.
Z. Yang and D. Zhao, Reflexive families of closed sets, Fund. Math., 192(2006), 111-120. crossref(new window)

8.
Z. Yang and D. Zhao, On reflexive closed set lattices, Comment. Math. Univ. Carolinae, 51(2010), 1:23-32.

9.
D. Zhao, On reflexive subobject lattices and reflexive endomorphism algebras, Comment. Math. Univ. Carolinae, 44(2003), 23-32.