JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Exposed Symmetric Bilinear Forms of 𝓛s(2d*(1, ω)2)
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 54, Issue 3,  2014, pp.341-347
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2014.54.3.341
 Title & Authors
Exposed Symmetric Bilinear Forms of 𝓛s(2d*(1, ω)2)
Kim, Sung Guen;
  PDF(new window)
 Abstract
We classify the exposed symmetric bilinear forms of the unit ball of .
 Keywords
extreme and exposed symmetric bilinear forms;the 2-dimensional real predual of the Lorentz sequence space;
 Language
English
 Cited by
1.
The Geometry of the Space of Symmetric Bilinear Forms on ℝ2 with Octagonal Norm,;

Kyungpook mathematical journal, 2016. vol.56. 3, pp.781-791 crossref(new window)
2.
Exposed Bilinear Forms of 𝓛(2d*(1, w)2),;

Kyungpook mathematical journal, 2015. vol.55. 1, pp.119-126 crossref(new window)
1.
Exposed Bilinear Forms of 𝓛(2d*(1, w)2), Kyungpook mathematical journal, 2015, 55, 1, 119  crossref(new windwow)
2.
Exposed 2-Homogeneous Polynomials on the two-Dimensional Real Predual of Lorentz Sequence Space, Mediterranean Journal of Mathematics, 2016, 13, 5, 2827  crossref(new windwow)
3.
The Geometry of the Space of Symmetric Bilinear Forms on ℝ2with Octagonal Norm, Kyungpook mathematical journal, 2016, 56, 3, 781  crossref(new windwow)
 References
1.
R. M. Aron, Y. S. Choi, S. G. Kim and M. Maestre, Local properties of polynomials on a Banach space, Illinois J. Math., 45(1)(2001), 25-39.

2.
Y. S. Choi, H. Ki and S. G. Kim, Extreme polynomials and multilinear forms on $l_1$, J. Math. Anal. Appl., 228(2)(1998), 467-482. crossref(new window)

3.
Y. S. Choi and S. G. Kim, The unit ball of P($^{2}l^{2}_{2}$), Arch. Math. (Basel), 71(6)(1998), 472-480. crossref(new window)

4.
Y. S. Choi and S. G. Kim, Extreme polynomials on $c_0$, Indian J. Pure Appl. Math., 29(10)(1998), 983-989.

5.
Y. S. Choi and S. G. Kim, Smooth points of the unit ball of the space P($^2l_1$), Results Math., 36(1-2)(1999), 26-33. crossref(new window)

6.
Y. S. Choi and S. G. Kim, Exposed points of the unit balls of the spaces P($^{2}l^{2}_{p}$) (p =1, 2,${\infty}$), Indian J. Pure Appl. Math., 35(1)(2004), 37-41.

7.
S. Dineen, Complex Analysis on Infinite Dimensional Spaces, Springer-Verlag, London (1999).

8.
S. Dineen, Extreme integral polynomials on a complex Banach space, Math. Scand., 92(1)(2003), 129-140. crossref(new window)

9.
B. C. Grecu, Geometry of 2-homogeneous polynomials on $l_p$ spaces, 1 < p < ${\infty}$, J. Math. Anal. Appl., 273(2)(2002), 262-282 . crossref(new window)

10.
B. C. Grecu, G. A. Munoz-Fernandez and J.B. Seoane-Sepulveda, Unconditional con-stants and polynomial inequalities, J. Approx. Theory, 161(2)(2009), 706-722. crossref(new window)

11.
S. G. Kim, Exposed 2-homogeneous polynomials on P($^{2}l^{2}_{p}$) (1 ${\leq}$ p ${\leq}$ ${\infty}$), Math. Proc. Royal Irish Acad., 107(2)(2007), 123-129. crossref(new window)

12.
S. G. Kim, The unit ball of $L_s$($^{2}l^{2}_{\infty}$), Extracta Math., 24(1)(2009), 17-29.

13.
S. G. Kim, The unit ball of P($^2d_{\ast}(1,w)^2$), Math. Proc. Royal Irish Acad., 111(2011), 77-92. crossref(new window)

14.
S. G. Kim, The unit ball of $L_s$($^2d_{\ast}(1,w)^2$), Kyungpook Math. J., 53(2)(2013), 295-306. crossref(new window)

15.
S. G. Kim, Smooth polynomials of P($^2d_{\ast}(1,w)^2$), Math. Proc. Royal Irish Acad., 113(1)(2013), 45-58. crossref(new window)

16.
S. G. Kim, Extreme bilinear forms of L($^2d_{\ast}(1,w)^2$), Kyungpook Math. J., 53(4)(2013), 625-638. crossref(new window)

17.
S. G. Kim and S. H. Lee, Exposed 2-homogeneous polynomials on Hilbert spaces, Proc. Amer. Math. Soc., 131(2)(2003), 449-453. crossref(new window)

18.
J. Lee and K. S. Rim, Properties of symmetric matrices, J. Math. Anal. Appl., 305(1)(2005), 219-226. crossref(new window)

19.
G. A. Munoz-Fernandez, S. Revesz and J. B. Seoane-Sepulveda, Geometry of homo-geneous polynomials on non symmetric convex bodies, Math. Scand., 105(1)(2009), 147-160. crossref(new window)

20.
G. A. Munoz-Fernandez and J. B. Seoane-Sepulveda, Geometry of Banach spaces of trinomials, J. Math. Anal. Appl., 340(2)(2008), 1069-1087. crossref(new window)

21.
R. A. Ryan and B. Turett, Geometry of spaces of polynomials, J. Math. Anal. Appl., 221(2)(1998), 698-711. crossref(new window)