JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Hyers-Ulam Stability of Jensen Functional Equation in p-Banach Spaces
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 54, Issue 3,  2014, pp.401-411
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2014.54.3.401
 Title & Authors
Hyers-Ulam Stability of Jensen Functional Equation in p-Banach Spaces
Kim, Hark-Mahn; Jun, Kil-Woung; Son, Eunyoung;
  PDF(new window)
 Abstract
In this paper, we prove the generalized Hyers-Ulam stability of the following Jensen type functional equation $$f(\frac{x-y}{n}+z)+f(\frac{y-z}{n}+x)+f(\frac{z-x}{n}+y)
 Keywords
Stability;Jensen functional equation;Quasi-normed spaces;p-Banach spaces;
 Language
English
 Cited by
 References
1.
T. Aoki, On the stability of the linear transformation in Banach spaces. J. Math. Soc. Japan, 2(1950), 64-66. crossref(new window)

2.
Y. Benyamini, J. Lindenstrauss, Geometric Nonlinear Functional Analysis, vol. 1. Colloq. Publ. 48(2000), Amer. Math. Soc. Providence.

3.
D. G. Bourgin, Classes of transformations and bordering transformations, Bull. Am. Math. Soc., 57(1951), 223-237. crossref(new window)

4.
Z. Gajda, On the stability of additive mappings. Int. J. Math. Math. Sci., 14(1991), 431-434. crossref(new window)

5.
Z. X. Gao, H. X. Cao, W. T. Zheng, L. Xu, Generalized Hyers-Ulam-Rassias stability of functional inequalities and functional equations, J. Math. Inequal., 3(2009), 63-77.

6.
P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184(1994), 431-436. crossref(new window)

7.
D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA 27(1941), 222-224. crossref(new window)

8.
S. Jung, On the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 204(1996), 221-226. crossref(new window)

9.
H. Kim and E. Son, Hyers-Ulam stability of Jensen Functional Inequality in p-Banach spaces, Abst. and Appl. Anal., 2012, Article ID 270954, 16pp.

10.
M. S. Moslehian, A. Najati, An application of a fixed point theorem to a functional inequality, Fixed Point Theory, 10(2009), 141-149.

11.
M. Moghimi, A. Najati, C. Park, A functional inequality in restricted domains of Banach modules, Adv. Difference Equations. 2009, Article ID 973709, 14pp.

12.
A. Najati, E. G. Zamani, Stability of a mixed additive and cubic functional equation in quasi-Banach spaces, J. Math. Anal. Appl., 342(2008), 1318-1331. crossref(new window)

13.
A. Najati, J. Lee, C. Park, On a Cauchy-Jensen functional inequality, Bull. Malaysian Math. Sci. Soc., 33(2010), 253-263.

14.
A. Najati, M.B Moghimi, Stability of a functional equation deriving from quadratic and additive function in quasi-Banach spaces, J. Math. Anal. Appl., 337(2008), 399-415. crossref(new window)

15.
Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Am. Math. Soc., 72(1978), 297-300. crossref(new window)

16.
Th. M. Rassias, The stability of mappings and related topics, in 'Report on the 27th ISFE'. Aequ. Math., 39(1990), 292-293.

17.
Th. M. Rassias, P. Semrl, P: On the behaviour of mappings which do not satisfy Hyers-Ulam-Rassias stability, Proc. Am. Math. Soc., 114(1992), 989-993. crossref(new window)

18.
J. M. Rassias, On approximation of approximately linear mappings by linear mappings, J. Funct. Anal., 46(1982), 126-130. crossref(new window)

19.
J. M. Rassias, On approximation of approximately linear mappings by linear mappings, Bull. Sci. Math., 108(1984), 445-446.

20.
S. Rolewicz, Metric Linear Spaces. PWN-Polish Scientific Publishers, Reidel, Warszawa, Dordrecht (1984)

21.
S. M. Ulam, A Collection of the Mathematical Problems. Interscience Publ., New York (1960)