JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Certain Class of Analytic Functions Defined by Ruscheweyh Derivative with Varying Arguments
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 54, Issue 3,  2014, pp.453-461
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2014.54.3.453
 Title & Authors
Certain Class of Analytic Functions Defined by Ruscheweyh Derivative with Varying Arguments
El-Ashwah, Rabha Mohamed; Aouf, Mohamed Kamal; Hassan, Ahmed; Hassan, Alaa;
  PDF(new window)
 Abstract
In this paper we derive some results for certain new class of analytic functions defined by using Ruscheweyh derivative with varying arguments.
 Keywords
analytic functions;univalent;Hadamard product;Ruscheweyh derivative;extreme points;
 Language
English
 Cited by
 References
1.
H. S. Al-Amiri, On Ruscheweyh derivatives, Ann. Polon. Math., 38(1980), 87-94.

2.
H. S. Al-Amiri, On a subclass of close-to-convex functions with negative coefficients, Math. (Cluj), 31(1989), 1-7.

3.
O. Altintas, A subclass of analytic functions with negative coefficients, Hacettepe Bull. Natur. Sci. Engrg., 19(1990), 15-24.

4.
A. A. Attiya and M. K. Aouf, A study on certain class of analytic functions defined by Ruscheweyh derivative, Soochow J. Math., 33(2)(2007), 273-289.

5.
V. P. Gupta and P. K. Jain, Certain classes of univalent functions with negative coefficients II, Bull. Austral. Math. Soc., 15(1976), 467-473. crossref(new window)

6.
S. Owa and M. K. Aouf, On subclasses of univalent functions with negative coefficients II, Pure Appl. Math. Sci., 29(1:2)(1989), 131-139.

7.
St. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc., 49(1975), 109-115. crossref(new window)

8.
S. M. Sarangi and B. A. Uralegaddi, The radius of convexity and starlikeness for certain classes of analytic functions with negative coefficients I, Rend. Acad. Naz. Lincei, 65(1978), 38-42.

9.
H. Silverman, Univalent functions with varying arguments, Houston J. Math., 17(1981), 283-287.

10.
H. M. Srivastava and S. Owa, Certain classes of analytic functions with varying arguments, J. Math. Anal. Appl., 136(1)(1988), 217-228. crossref(new window)

11.
B. A. Uralegaddi and S. M. Sarangi, Some classes of univalent functions with negative coefficients, An. Stiint. Univ. Al. I. Cuza Iasi Sect. I a Mat. (N. S.), 34(1988), 7-11.