Meromorphic Functions Sharing a Nonzero Value with their Derivatives

- Journal title : Kyungpook mathematical journal
- Volume 55, Issue 1, 2015, pp.137-147
- Publisher : Department of Mathematics, Kyungpook National University
- DOI : 10.5666/KMJ.2015.55.1.137

Title & Authors

Meromorphic Functions Sharing a Nonzero Value with their Derivatives

Li, Xiao-Min; Ullah, Rahman; Piao, Da-Xiong; Yi, Hong-Xun;

Li, Xiao-Min; Ullah, Rahman; Piao, Da-Xiong; Yi, Hong-Xun;

Abstract

Let f be a transcendental meromorphic function of finite order in the plane such that has finitely many zeros for some positive integer . Suppose that and f share a CM, where is a positive integer, is a finite complex value. Then f is an entire function such that $f^{(k)}-a

Keywords

Meromorphic functions;Order of growth;Shared values;Uniqueness theorems;

Language

English

References

1.

A. Al-Khaladi, On meromorphic functions that share one value with their derivative, Analysis, 25(2005), 131-140.

2.

A. Al-Khaladi, On meromorphic functions that share one small function with their kth derivative, Results. Math., 57(2010), 313-318.

3.

A. Al-Khaladi, Meromorphic functions that share one finite value CM or IM with their k-th derivative, Results. Math., 63(2013), 95-105.

4.

A. Banerjee and P. Bhattacharjee, Uniqueness of meromorphic functions sharing one value with their derivatives, Mathematical Communications, 13(2008), 277-288 .

5.

R. Bruck, On entire functions which share one value CM with their first derivative, Results in Math., 30(1996), 21-24.

6.

J. M. Chang and Y. Z. Zhu, Entire functions that share a small function with their derivatives, J. Math. Anal. Appl., 351(2009), 491-496.

7.

J. M. Chang and M. L. Fang, Entire functions that share a small function with their derivatives, Complex Variables Theory Appl., 49(2004), 871-895.

8.

Z. X. Chen and K. H. Shon, On conjecture of R. Bruck concerning the entire function sharing one value CM with its derivative, Taiwanese J. Math., 8(2004), 235-244.

9.

Z. X. Chen and C. C. Yang, Some further results on the zeros and growths of entire solutions of second order linear differential equation, Kodai Math J., 22(1999), 273-285.

10.

Z. X. Chen, The growth of solutions of $f^{{\prime}{\prime}}+e^{-2}f^{\prime}+Q(z)f=0$ , Science in China (A), 31(2001), 775-784.

11.

G. G. Gundersen and L. Z. Yang, Entire functions that share one value with one or two of their derivatives, J. Math. Anal. Appl., 223(1998 ), 88-95.

12.

W. K. Hayman, Meromorphic Functions, The Clarendon Press, Oxford, 1964.

13.

J. Heittokangas, R. Korhonen, I. Laine, J. Rieppo and J. Zhang, Value sharing results for shifts of meromorphic functions and sufficient conditions for periodicity, J. Math. Anal. Appl., 355(2009), 352-363.

14.

G. Jank and L. Volkmann, Einfuhrung in die Theorie der ganzen und meromorphen Funktionen mit Anwendungen auf Differentialgleichungen, Birkhauser, Basel-Boston, 1985.

15.

I. Lahiri and A. Sarkar, Uniqueness of a meromorphic function and its derivative, J. Inequal. Pure and Appl. Math., 5(2004), Issue 1, Art. 20.

16.

I. Laine, Nevanlinna Theory and Complex Differential Equations, Walter de Gruyter, Berlin/New York, 1993.

17.

J. K. Langley, The second derivative of a meromorphic function of finite order, Bulletin London Math. Soc., 35(2003), 97-108.

18.

J. K. Langley, Proof of a conjecture of Hayman concerning f and $f^{{\prime}{\prime}}$ , Bulletin London Math. Soc., 48(1993), 500-514.

19.

20.

X. M. Li and C. C. Gao, Entire functions sharing one polynomial with their derivatives, Proc. Indian Acad. Sci. (Math. Sci.), 118(2008), 13-26.

21.

X. M. Li and H. X. Yi, An entire function and its derivatives sharing a polynomial, J. Math. Anal. Appl., 330(2007), 66-79.

22.

X. M. Li and H. X. Yi , On uniqueness of an entire function and its derivatives, Arch. Math., 89(2007), 216-225.

23.

X. M. Li and H. X. Yi , Some results on the regular solutions of a linear differential equation , Comput. Math. Appl., 56(2008), 2210-2221.

24.

X. M. Li and H. X. Yi, Some further results on entire function sharing a polynomial with their linear differential polynomial, Taiwanese J. Math., 12(2008), 2405-2425.

25.

X. M. Li and H. X. Yi, On the uniqueness of an entire function sharing a small entire function with some linear differential polynomial, Czechoslovak Math. J., 59(2009), 1039-1058.

26.

X. M. Li and H. X. Yi, Uniqueness of meromorphic functions sharing a meromorphic function of a smaller order with their derivatives, Ann. Polon. Math., 98(2010), 207-219.

27.

J. Y. Qiao, The value distribution of entire functions of finite order, Kodai Math. J., 12(1989), 429-436.

28.

L. Rubel and C. C. Yang, Values shared by an entire function and its derivative , in "Complex Analysis, Kentucky 1976" (Proc.Conf.), Lecture Notes in Mathematics, Vol 599, pp. 101-103, Springer-Verlag, Berlin, 1977.

29.

J. P. Wang, Entire functions that share a polynomial with one of their derivatives, Kodai Math J., 27(2004), 144-151.

30.

J. Wang and I. Laine, Uniqueness of entire functions and their derivatives, Comput. Methods and Function Theory, 8(2008), 327-338.

31.

J. Wang and X. M. Li , The uniqueness of an entire function sharing a small entire function with its derivatives, J. Math. Anal. Appl., 354(2009), 478-489.

32.

Y. H. Xiao and X. M. Li, An entire function sharing one small entire function with its derivative, Applied.Math.E-Notes, 8(2008), 238-245.

33.

L. Yang, Value Distribution Theory, Springer-Verlag, Berlin Heidelberg, 1993.

34.

C. C. Yang and H. X. Yi, Uniqueness Theory of Meromorphic Functions, Kluwer Academic Publishers, Dordrecht/Boston/London, 2003.

35.

Q. C. Zhang, Meromorphic function that share one small function with its derivative, J. Inequal. Pure and Appl. Math., 6(2005), Issue 4, Art. 116.

36.

J. L. Zhang and L. Z. Yang, Some results related to a conjecture of R. Bruck , J. Inequal. Pure and Appl. Math., 8(2007), Issue 1, Art. 18.

37.

J. L. Zhang and L. Z. Yang, Some results related to a conjecture of R. Bruck concerning meromorphic functions sharing one small function with their derivatives, Ann. Acad. Sci. Fenn. Math., 32(2007), 141-149.