JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Some Symmetric Properties on (LCS)n-manifolds
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 55, Issue 1,  2015, pp.149-156
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2015.55.1.149
 Title & Authors
Some Symmetric Properties on (LCS)n-manifolds
Venkatesha, Venkatesha; Naveen Kumar, Rahuthanahalli Thimmegowda;
  PDF(new window)
 Abstract
We analyze the -manifolds endowed with some symmetric properties, focusing on Ricci tensor and the 1-form . We study some properties of special Weakly Ricci-Symmetric -manifolds and also shown that Weakly -Ricci Symmetric -manifold is an -Einstein manifold.
 Keywords
Lorentzian metric;Ricci tensor;Einstein manifold;Weakly Riccisymmetric;Weakly -Ricci Symmetric;
 Language
English
 Cited by
 References
1.
A. Bhagwat Prasad, A Pseudo Projective Curvature Tensor on a Riemannian Manifolds, Bull. Cal. Math. Soc., 94(3)(2002), 163-166.

2.
E. Cartan, Sur une classe remarquable despaces de Riemannian, Bull. Soc. Math., France, 54(1926), 214-264.

3.
U. C. De and D. Tarafdar, On a type of new tensor in a Riemannian manifold and its relativistic significance, Ranchi Univ. Math. J., 24(1993), 17-19.

4.
U. C. De and S. Bandyopadhyay, On weakly symmetric Riemannian spaces, Publi. Math. Debrecen., 54(1999), 377-381.

5.
U. C. De, A. A. Shaikh and S. Biswas, On weakly symmetric contact metric manifolds, Tensor, N. S., 64(2003), 170-175.

6.
K. Matsumoto, On Lorentzian paracontact manifolds, Bull. of Yamagata Univ. Nat. Sci., 12(2)(1989), 151-156.

7.
G. P. Pokhariyal and R. S. Mishra, Curvature tensors and their relativistics significance, Yokohama Mathematical Journal, 18(1970), 105-108.

8.
J. A. Schouten, Ricci Calculas(second Edition), Springer-Verlag., (1954), 322.

9.
A. A. Shaikh, orentzian almost paracontact manifolds with a structure of concircular type, Kyungpook Math. J., 43(2)(2003), 305-314.

10.
A. A. Shaikh and S. K. Jana, On weakly symmetric manifolds, Publi. Math. Debrecen., 71/1-2(2007), 27-41.

11.
A. A. Shaikh and S. K. Jana, On weakly Cyclic Ricci symmetric manifolds, Ann. Polon. Math., 89(2006), 273-288. crossref(new window)

12.
S. S. Shukla and Mukesh Kumar Shukla, On ${\phi}$-ricci symmetric kenmotsu manifolds, Novi Sad J. Math., 39(2)(2009), 89-95.

13.
L. Tamassy and T. Q. Binh, On weakly symmetric and weakly projective symmetric Riemannian manifolds, Colloq. Math. Janos Bolyai., 56(1989), 663-670.

14.
L. Tamassy and T. Q. Binh, On weakly symmetries of Einstein and Sasakian manifolds, Tensor, N. S., 53(1993), 140-148.

15.
Venkatesha and C. S. Bagewadi, On concircular ${\phi}$-recurrent LP-Sasakian manifolds, Differ. Geom. Dyn. Syst., 10(2008), 312-319.

16.
Venkatesha, C. S. Bagewadi and K. T. Pradeep Kumar, Some results on Lorentzian para-Sasakian manifolds, ISRN Geometry, 2011(2011), 9 pages.

17.
K. Yano and M. Kon, Structures on Manifolds, Series in Pure Mathematics, World Scientific, Singapore, 3(1984).

18.
K. Yano and S. Sawaki, Riemannian manifolds admitting a conformal transformation group, J. Differential Geometry, 2(1968), 161-184.