Advanced SearchSearch Tips
On a Quasitoric Virtual Braid Presentation of a Virtual Link
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 55, Issue 1,  2015, pp.191-203
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2015.55.1.191
 Title & Authors
On a Quasitoric Virtual Braid Presentation of a Virtual Link
Bae, Yongju; Seo, Seogman;
  PDF(new window)
We introduce a quasitoric virtual braid and show that every virtual link can be obtained by the closure of a quasitoric virtual braid. Also, we show that the set of quasitoric virtual braids with n strands forms a group which is a subgroup of the n-virtual braid group.
Link;Knot;Braid;Toric Braid;Quasitoric braid;Braid index;Quasitoric braid index;
 Cited by
Y. Bae and S. Seo, On the quasitoric braid index of a link, preprint (2014).

V. G. Bardakov, The virtual and universal braids, Fund. Math., 184(2004), 1-18. crossref(new window)

S. Kamada, Braid presentation of virtual knots and welded knots, Osaka J. Math., 44(2007), 441-458.

L. H. Kauffman, virtual knot theory , European J. Combin., 20(1999), 663-690. crossref(new window)

L. H. Kauffman and S. Lambropoulou, Virtual braids, Fund. Math., 184(2004), 159-186. crossref(new window)

L. H. Kauffman and S. Lambropoulou, Virtual braids and L-moves, J. Knot Theory Ramifications, 15(2006), 773-811. crossref(new window)

V. O. Manturov, A combinatorial representation of links by quasitoric braids, European J. Combin., 23(2002), 207-212. crossref(new window)