JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Vertex Antimagic Total Labeling of Digraphs
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 55, Issue 2,  2015, pp.267-277
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2015.55.2.267
 Title & Authors
Vertex Antimagic Total Labeling of Digraphs
PANDIMADEVI, J.; SUBBIAH, S.P.;
  PDF(new window)
 Abstract
In this paper we investigate the properties of (a, d)-vertex antimagic total labeling of a digraph D = (V, A). In this labeling, we assign to the vertices and arcs the consecutive integers from 1 to |V|+|A| and calculate the sum of labels at each vertex, i.e., the vertex label added to the labels on its out arcs. These sums form an arithmetical progression with initial term a and common difference d. We show the existence and non-existence of (a, d)-vertex antimagic total labeling for several class of digraphs, and show how to construct labelings for generalized de Bruijn digraphs. We conclude this paper with an open problem suitable for further research.
 Keywords
(a, d)-vertex antimagic labeling;Generalized de Bruijn digraphs;
 Language
English
 Cited by
 References
1.
M. Baca, Y. Lin, M. Miller and R. Simanjuntak, New constructions of magic and antimagic graph labelings, Utilitas Mathematica, 60(2001) 229-239.

2.
M. Baca, F. Bertault, J. MacDougall, M. Miller, R. Simanjuntak and Slamin, Vertex-Antimagic total labelings of graphs, Discussiones Mathematicae Graph Theory, 23(2003), 67-3. crossref(new window)

3.
J. Baskar Babujee, Antimagic labeling on certain classes of graphs, Acta Ciencia Indica, Mathematics XXXI, (4)(2005), 1027-1030.

4.
J. Baskar Babujee, On a conjecture of Martin Baca about (a, 1)-edge-antimagic vertex labeling, in: 11th International Conference on Multidisciplinary Mathematics SCRA 2004, South Alabama University, USA and IET-Lucknow, India, 2004.

5.
J. Baskar Babujee and N. Prabhakara Rao, Labelling in digraph, Journal of the Mathematics Education, 39(2)(2005), 73-8.

6.
J. C. Bermond, C. Peyrat, de Bruijn and Kautz, Networks: A competitor for the hypercube?, in: F. Andre, J. P. Verjus (Eds.), Hypercube and Distributed Computers, North Holland, Amsterdam, (1989), 279-293.

7.
G. Chartrand and L. Lesniak, Graphs and Digraphs, Chapman and Hall, BocaRoton,London, Newyork, Washington, D.C., (1996), 3rd Edition.

8.
N. G. de Bruijn, A combinatorial problem, Koninklijke Nederlandse Akademievan Wetenschappen Proc., A49(1946), 745-764.

9.
J. A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin., 19(2012), #DS6.

10.
K. Thirusangu, A. K. Nagar and R. Rajeswari, Labelings in Cayley digraphs, European J. Combin., 32(1)(2011), 133139.

11.
K. Thirusangu, J. Baskar Babujee and R. Rajeswari, On antimagic labelings in Cayley digraphs, International Journal of Mathematics and Applications, 2(13)(2009), 11-16.

12.
N. Hartsfield and G. Ringel, Pearls in Graph Theory, Academic Press, San Diego, 1990.

13.
A. M. Marr and W. D. Wallis, Magic graphs, Birkhauser, Boston, Basel, Berlin, 2013 (2nd edition).