Advanced SearchSearch Tips
Error Control Strategy in Error Correction Methods
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 55, Issue 2,  2015, pp.301-311
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2015.55.2.301
 Title & Authors
Error Control Strategy in Error Correction Methods
  PDF(new window)
In this paper, we present the error control techniques for the error correction methods (ECM) which is recently developed by P. Kim et al. [8, 9]. We formulate the local truncation error at each time and calculate the approximated solution using the solution and the formulated truncation error at previous time for achieving uniform error bound which enables a long time simulation. Numerical results show that the error controlled ECM provides a clue to have uniform error bound for well conditioned problems [1].
Error Correction Method;Runge-Kutta method;Error control;Local truncation error;Well-conditioned problem;
 Cited by
K. E. Atkinson, An introduction to numerical analysis, John Wiley & Sons, Inc. (1989).

L. Brugnano and C. Magherini, Blended implementation of block implicit methods for ODEs, Appl. Numer. Math., 42(2002), 29-45. crossref(new window)

S. Bu, J. Huang, and M. M. Minion, Semi-implicit Krylov Deferred Correction Methods for Differential Algebraic Equations, Mathematics of Computation, 81(2012), 2127-2157. crossref(new window)

S. Bu, J. Lee, An enhanced parareal algorithm based on the deferred correction methods for a stiff system, Journal of Computational and Applied Mathematics, 255(1)(2014), 297-305. crossref(new window)

E. Hairer, G. Wanner, Solving ordinary differential equations. II Stiff and Differential-Algebraic Problems, Springer Series in Computational Mathematics, Springer (1996).

K. Gustafsson, Control-theoretic techniques for stepsize selection in implicit Runge-Kutta methods, ACM Transactions on Mathematical Software, 20(4)(1994), 496-517. crossref(new window)

C. Johnson, Error estimates and adaptive time-step control for a class of one-step methods for stiff ordinary differential equations, SIAM J. Numer. Anal., 25(4)(1988), 908-926. crossref(new window)

P. Kim, X. Piao and S. D. Kim, An error corrected Euler method for solving stiff problems based on Chebyshev collocation, SIAM J. Numer. Anal., 49(2011), 2211-2230. crossref(new window)

S. D. Kim, X. Piao, D. H. Kim and P. Kim, Convergence on error correction methods for solving initial value problems, J. Comp. Appl. Math., 236(17)(2012), 4448-4461. crossref(new window)

P. Kim, S. D. Kim and E. Lee, Simple ECEM algorithms using function values only, Kyungpook Mathematical Journal, 53(4)(2013), 573-591. crossref(new window)

G. Y. Kulikov, Global Error Control in Adaptive Nordsieck Methods, SIAM J. Sci. Comput., 34(2)(2012), A839-A860. crossref(new window)

H. Ramos, A non-standard explicit integration scheme for initial-value problems, Appl. Math. Comp., 189(1)(2007), 710-718. crossref(new window)