JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Subnormality and Weighted Composition Operators on L2 Spaces
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 55, Issue 2,  2015, pp.345-353
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2015.55.2.345
 Title & Authors
Subnormality and Weighted Composition Operators on L2 Spaces
AZIMI, MOHAMMAD REZA;
  PDF(new window)
 Abstract
Subnormality of bounded weighted composition operators on of the form $Wf
 Keywords
Subnormal;Weighted composition operators;Conditional expectation;Moment sequence;
 Language
English
 Cited by
 References
1.
C. Burnap, I. Jung, Composition operators with weak hyponormality, J. Math. Anal. Appl., 337(2008), 686-694. crossref(new window)

2.
C. Burnap, I. Jung and A. Lambert, Separating partial normality classes with composition operators, J. Operator Theory, 53(2005), 381-397.

3.
J. B. Conway, Subnormal Operators, Pitman Publ. Co., London, 1981.

4.
J. B. Conway, The Theory of Subnormal Operators, Math. Surveys Monogr., Amer. Math. Soc., Providence, RI, 1991.

5.
M. Fujii, S. Izumino and R. Nakamoto, Classes of operators determined by the Heinz-Kato-Furuta inequality and the Holder- McCarthy inequality, Nihonkai Math. J., 5(1994), 61-67.

6.
J. Herron, Weighted conditional expectation operators, Oper. Matrices, 5(2011), 107-118.

7.
T. Hoover, A. Lambert and J. Quinn, The Markov process determined by a weighted composition operator, Studia Math., 72(3)(1982), 225-235.

8.
M. R. Jabbarzadeh, M. R. Azimi, Some weak hyponormal classes of weighted composition operators, Bull. Korean Math. Soc., 47(4)(2010), 793-803. crossref(new window)

9.
R. Kumar, Ascent and descent weighted composition operators on $L^p$-spaces, Math. Vesnik, 60(2008), 47-51.

10.
A. Lambert, Thomas G. Lucas, Nagata's principle of idealization in relation to module homomorphisms and conditional expectations, Kyungpook Math. J., 40(2000), 327-337.

11.
A. Lambert, Normal extentions of subnormal compostion operators, Michigan Math. J., 35(1988), 443-450. crossref(new window)

12.
A. Lambert, Subnormal composition operators, Proc. Amer. Math. Soc., 103(1988), 750-754. crossref(new window)

13.
A. Lambert, Hyponormal composition operators, Bull. Lond. Math. Soc., 18(1986), 395-400. crossref(new window)

14.
A. Lambert, Subnormality and weighted shifts, Bull. Lond. Math. Soc., 14(2)(1976), 476-480.

15.
E. Nordgren, Composition operators on Hilbert spaces, in: Lecture Notes in Math., 693, Springer-Verlag, Berlin, 1978.

16.
M. M. Rao, Conditional measure and applications, Marcel Dekker, New York, 1993.

17.
R. K. Singh, J. S. Manhas, Composition Operators on Function Spaces, Elsevier Science Publishers B. V., North-Holland, Amsterdam, 1993.

18.
J. Stochel, J. B. Stochel, Seminormal composition operators on L2 spaces induced by matrices: The Laplace density case, J. Math. Anal. Appl., 375(2011), 1-7. crossref(new window)

19.
R. Whitley, Normal and quasinormal composition operators, Proc. Amer. Math. Soc., 70(1978), 114-118. crossref(new window)

20.
D. Widder, The Laplace transform, Princeton Univ. Press, Princeton, N. J., 1946.