JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Reduction Formulas for Srivastava`s Triple Hypergeometric Series F(3)[x, y, z]
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 55, Issue 2,  2015, pp.439-447
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2015.55.2.439
 Title & Authors
Reduction Formulas for Srivastava`s Triple Hypergeometric Series F(3)[x, y, z]
CHOI, JUNESANG; WANG, XIAOXIA; RATHIE, ARJUN K.;
  PDF(new window)
 Abstract
Very recently the authors have obtained a very interesting reduction formula for the Srivastava`s triple hypergeometric series (x, y, z) by applying the so-called Beta integral method to the Henrici`s triple product formula for the hypergeometric series. In this sequel, we also present three more interesting reduction formulas for the function (x, y, z) by using the well known identities due to Bailey and Ramanujan. The results established here are simple, easily derived and (potentially) useful.
 Keywords
Generalized hypergeometric function ;Gamma function;Pochhammer symbol;Beta integral; de function;Srivastava`s triple hypergeometric series [x, y, z];Henrici`s formula;
 Language
English
 Cited by
 References
1.
P. Appell and J. Kampe de Feriet, Fonctions Hypergeometriques et Hyperspheriques; Polynomes d'Hermite, Gauthier - Villars, Paris, 1926.

2.
W. N. Bailey, Products of generalized hypergeometric series, Proc. London Math. Soc., ser 2, 28(1928), 242-254.

3.
W. N. Bailey, Generalized Hypergeometric Series, Cambridge Tracts in Mathematics and Mathematical Physics, 32, Cambridge University Press, Cambridge, London and New York, 1935; Reprinted by Stechert-Hafner Service Agency, New York and London, 1964.

4.
J. L. Burchnall and T. W. Chaundy, Expansions of Appell's double hypergeometric functions II, Quart. J. Math. (Oxford ser.), 11(1940), 249-270.

5.
J. L. Burchnall and T. W. Chaundy, Expansions of Appell's double hypergeometric functions, Quart. J. Math. (Oxford ser.), 12(1941), 112-128.

6.
J. Choi, A. K. Rathie and H. M. Srivastava, Certain hypergeometric identities deducible by using the Beta integral method, Bull. Korean Math. Soc., 50(2013), 1673-1681. crossref(new window)

7.
J. Choi, X.Wang and A. K. Rathie, A reducibility of Srivastava's triple hypergeometric series $F^{(3)}$[x, y, z], Commun. Korean Math. Soc., 28(2)(2013), 297-301. crossref(new window)

8.
P. Henrici, A triple product theorem for hypergeometric series, SIAM J. Math. Anal., 18(1987), 1513-1518. crossref(new window)

9.
P. W. Karlsson and H. M. Srivastava, A note of Henrici's triple product theorem, Proc. Amer. Math. Soc., 110(1990), 85-88.

10.
C. Krattenthaler and K. S. Rao, Automatic generation of hypergeometric identities by the beta integral method, J. Comput. Appl. Math., 160(2003), 159-173. crossref(new window)

11.
M. A. Pathan, M. I. Qureshi and F. V. Khan, Reducibility of Kampe de Feriet's hypergeometric series of higher order, Serdica, 2(1985), 20-24.

12.
E. D. Rainville, Special Functions, Macmillan Company, New York, 1960; Reprinted by Chelsea Publishing Company, Bronx, New York, 1971.

13.
S. Ramanujan, Notebooks, 1 and 2, TIFR, Bombay, 1957.

14.
H. M. Srivastava, Generalized Neumann expansions involving hypergeometric functions, Proc. Cambridge Philos. Soc., 63(1967), 425-429. crossref(new window)

15.
H. M. Srivastava and J. Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Science Publishers, Amsterdam, London and New York, 2012.

16.
H. M. Srivastava and P. W. Karlsson, Multiple Gaussian Hypergeometric Series, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1985.

17.
H. M. Srivastava and H. L. Manocha, A Treatise on Generating Functions, Halsted Press (Ellis Horwood Limited, Chichester), Wiley, New York, Chichester, Brisbane, and Toronto, 1984.

18.
H. M. Srivastava and R. Panda, An integral representation for the product of two Jacobi polynomials, J. London Math. Soc., 12(2)(1976), 419-425.