JOURNAL BROWSE
Search
Advanced SearchSearch Tips
The Forbidden Number of a Knot
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 55, Issue 2,  2015, pp.485-506
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2015.55.2.485
 Title & Authors
The Forbidden Number of a Knot
CRANS, ALISSA S.; MELLOR, BLAKE; GANZELL, SANDY;
  PDF(new window)
 Abstract
Every classical or virtual knot is equivalent to the unknot via a sequence of extended Reidemeister moves and the so-called forbidden moves. The minimum number of forbidden moves necessary to unknot a given knot is an invariant we call the forbidden number. We relate the forbidden number to several known invariants, and calculate bounds for some classes of virtual knots.
 Keywords
virtual knot;forbidden move;odd writhe;
 Language
English
 Cited by
1.
Alexander and writhe polynomials for virtual knots, Journal of Knot Theory and Its Ramifications, 2016, 25, 08, 1650050  crossref(new windwow)
 References
1.
S. Carter, S. Kamada and M. Saito, Stable equivalence of knots on surfaces and virtual cobordisms, J. Knot Theory Ramifications, 11(2001), 311-322.

2.
Z. Cheng, A polynomial invariant of virtual knots, To appear in Proc. AMS.

3.
P. Cromwell, Knots and Links, Cambridge University Press, Cambridge, UK, 2004.

4.
H. Dye and L. Kauffman, Virtual crossing number and the arrow polynomial, J. Knot Theory Ramifications, 18(2009), 1335-1357. crossref(new window)

5.
T. Fleming and B. Mellor, Intrinsic linking and knotting in virtual spatial graphs, Alg. Geom. Top., 7(2007), 583-601. crossref(new window)

6.
M. Goussarov, M. Polyak, and O. Viro, Finite-type invariants of classical and virtual knots, Topology, 39(2000), 1045-1068. crossref(new window)

7.
J. Green, A Table of Virtual Knots, http://www.math.toronto.edu/drorbn/Students/GreenJ/

8.
A. Henrich, A sequence of degree one Vassiliev invariants for virtual knots, J. Knot Theory Ramifications, 19(4)(2010), 461487.

9.
A. Henrich, N. MacNaughton, S. Narayan, O. Pechenk, and J. Townsend, Classical and virtual pseudodiagram theory and new bounds on unknotting numbers and genus, J. Knot Theory Ramifications, 20(4)(2011), 625 - 616. crossref(new window)

10.
S. Kamada. Braid presentation of virtual knots and welded knots, Osaka J. Math., 44(2)(2007), 2441-458.

11.
T. Kanenobu. Forbidden moves unknot a virtual knot, J. Knot Theory Ramifications, 10(2001), 89-96. crossref(new window)

12.
L. H. Kauffman, Virtual knot theory, Europ. J. Combinatorics, 20(1999), 663-691. crossref(new window)

13.
L. H. Kauffman, A self-linking invariant of virtual knots. Fund. Math., 184:135-158, 2004. crossref(new window)

14.
L. H. Kauffman, Introduction to virtual knot theory. arXiv:1101.0665v1 [math.GT] 4 Jan 2011.

15.
L. H. Kauffman and V. O. Manturov, Virtual knots and links. (Russian) Tr. Mat. Inst. Steklova 252 (2006), Geom. Topol., Diskret. Geom. i Teor. Mnozh., 114-133. Translation in Proc. Steklov Inst. Math. no. 1, 252:104121, 2006.

16.
P. Kronheimer and T. Mrowka, Gauge Theory for embedded surfaces I, Topology 32:773-826, 1993. crossref(new window)

17.
G. Kuperberg, What is a virtual link? Algebraic & Geometric Topology, 3:587-591, 2003. crossref(new window)

18.
K. Murasugi, On a certain numerical invariant of link types. Trans. Amer. Math. Soc., 117:387-422, 1965. crossref(new window)

19.
S. Nelson, Unknotting virtual knots with Gauss diagram forbidden moves. J. Knot Theory Ramifications, 10:931-935, 2001. crossref(new window)

20.
M. Sakurai, An Estimate of the Unknotting Numbers for Virtual Knots by Forbidden Moves. J. Knot Theory Ramifications, Vol. 22, No. 3 (2013) 1350009. crossref(new window)

21.
S. Satoh, Virtual knot presentation of ribbon torus-knots. J. Knot Theory Ramifications, 9:531-542, 2000.

22.
H. Schubert, Uber eine numerische Knoteninvariante. Math. Z. 61:245-288, 1954. crossref(new window)