JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Weyl Type Theorems for Unbounded Hyponormal Operators
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 55, Issue 3,  2015, pp.531-540
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2015.55.3.531
 Title & Authors
Weyl Type Theorems for Unbounded Hyponormal Operators
GUPTA, ANURADHA; MAMTANI, KARUNA;
  PDF(new window)
 Abstract
If T is an unbounded hyponormal operator on an infinite dimensional complex Hilbert space H with , then it is shown that T satisfies Weyl`s theorem, generalized Weyl`s theorem, Browder`s theorem and generalized Browder`s theorem. The equivalence of generalized Weyl`s theorem with generalized Browder`s theorem, property (gw) with property (gb) and property (w) with property (b) have also been established. It is also shown that a-Browder`s theorem holds for T as well as its adjoint .
 Keywords
Unbounded hyponormal operators;Weyl-type theorems;property (w);property (b);
 Language
English
 Cited by
 References
1.
P. Aiena, Fredholm and local spectral theory with applications to multipliers, Kluwer Acad. Publishers, (2004).

2.
M. Amouch, M. Berkani, On the property (gw), Mediterr. J. Math., 5(2008), 371-378. crossref(new window)

3.
M. Berkani, Index of B-Fredholm operators and generalization of a Weyl theorem, Proc. Amer. Math. Soc., 130(2002), 1717-1723. crossref(new window)

4.
M. Berkani, A. Arroud, Generalized Weyl's theorem and hyponormal operators, J. Aust. Math. Soc., 76(2)(2004), 291-302. crossref(new window)

5.
M. Berkani, N. Castro-Gonzalez, Unbounded B-Fredholm operators on Hilbert spaces, Proc. of the Edinburg Math. Soc., 51(2008), 285-296.

6.
M. Berkani, J. J. Koliha, Weyl type theorems for bounded linear operators, Acta Sci. Math. (Szeged), 69(2003), 359-376.

7.
M. Berkani, H. Zariouh, Extended Weyl type theorems, Mathematica Bohemica, 134(4)(2009), 369-378.

8.
L. A. Coburn, Weyl's theorem for nonnormal operators, The Michigan Mathematical Journal, 13(3)(1966), 285-288. crossref(new window)

9.
N. Dunford, Spectral theory I. Resolution of the identity, Pacific Journal of Math., 2(1952), 559-614. crossref(new window)

10.
J. K. Finch, The Single Valued Extension Property on a Banach Space, Pacific Journal of Math., 58 1(1975), 61-69. crossref(new window)

11.
W. Gongbao, M. Jipu, Spectral characterization of Hyponormal Weighted Shifts, arXiv preprint math/0302275, (2003).

12.
D. C. Lay, Spectral Analysis Using Ascent, Descent, Nullity and Defect, Math. Ann., 184(1970), 197-214. crossref(new window)

13.
V. Rakocevic, On a class of operators, Mat. Vesnik., 37(1985), 423-426.

14.
A. E. Taylor, D. C. Lay Introduction to Functional Analysis, Second Edition, New York, Wiley and sons, (1980).

15.
H. Weyl, Uber beschrankte quadatische Formen, deren Differenz Vollstetig ist, Rend. Circ. Mat. Palermo, 27(1909) 373-392. crossref(new window)