JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Pointless Form of Rough Sets
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 55, Issue 3,  2015, pp.549-562
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2015.55.3.549
 Title & Authors
Pointless Form of Rough Sets
FEIZABADI, ABOLGHASEM KARIMI; ESTAJI, ALI AKBAR; ABEDI, MOSTAFA;
  PDF(new window)
 Abstract
In this paper we introduce the pointfree version of rough sets. For this we consider a lattice L instead of the power set P(X) of a set X. We study the properties of lower and upper pointfree approximation, precise elements, and their relation with prime elements. Also, we study lower and upper pointfree approximation as a Galois connection, and discuss the relations between partitions and Galois connections.
 Keywords
rough set;frame;prime element;lower and upper approximations;precise elements;Galois connection;
 Language
English
 Cited by
1.
On the category of rough sets, Soft Computing, 2016  crossref(new windwow)
 References
1.
S. Burris and H. P. Sankappanavar, A Course in Universal Algebra, Springer-Verlag, 1981.

2.
A. A. Estaji, S. Khodaii and S. Bahrami, On rough set and fuzzy sublattice, Information Sciences, 181(18)(2011), 3981-3994. crossref(new window)

3.
A. A. Estaji, M. R. Hooshmandasl and B. Davvaz, Rough set theory applied to lattice theory, Information Sciences, 200(2012), 108-122. crossref(new window)

4.
B. Ganter and R. Wille, Formal Concept Analysis, Springer-Verlag, Berlin, 1999.

5.
G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove and D. S. Scott, Continuous Lattices and Domains, Cambridge University Press, 2003.

6.
F. Hausdorff, Grundzuge der Mengenlehre, Leipzig, Veit and Co., 1914.

7.
P. T. Johnstone, Stone spaces, vol. 3 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, (1982).

8.
P. T. Johnstone, The point of pointless topology, Bull. Amer. Math. Soc. (N.S.), 8(1)(1983), 41-53. crossref(new window)

9.
Xiangping Kang, Deyu Li, Suge Wang and Kaishe Qu, Rough set model based on formal concept analysis, Information Sciences, 222(2013), 611-625. crossref(new window)

10.
Z. Pawlak, Rough sets, International Journal of Information Computer Science, 11(1982), 341-356. crossref(new window)

11.
Z. Pawlak and A. Skowron, Rough sets and boolean reasoning, Information Sciences, 177(2007), 41-73. crossref(new window)

12.
Shiping Wang, Qingxin Zhu, William Zhu and Fan Min, Quantitative analysis for covering-based rough sets through the upper approximation number, Information Sciences, 220(2013), 483-491. crossref(new window)

13.
Lingyun Yang and Luoshan Xu, Roughness in quantales, Information Sciences, 220(2013), 568-579. crossref(new window)