JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Fekete-Szegö Inequalities for Quasi-Subordination Functions Classes of Complex Order
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 55, Issue 3,  2015, pp.679-688
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2015.55.3.679
 Title & Authors
Fekete-Szegö Inequalities for Quasi-Subordination Functions Classes of Complex Order
EL-ASHWAH, RABHA; KANAS, STANISLAWA;
  PDF(new window)
 Abstract
In this paper, we obtain Fekete- inequalities for certain subclasses of analytic univalent functions of complex order associated with quasi-subordination.
 Keywords
quasi-subordination;univalent functions;starlike functions;convex functions;Fekete- problem;
 Language
English
 Cited by
1.
Certain Subclasses of Bistarlike and Biconvex Functions Based on Quasi-Subordination, Abstract and Applied Analysis, 2016, 2016, 1  crossref(new windwow)
 References
1.
K. Al-Shaqsi and M. Darus, On Fekete-Szego Problems for Certain Subclass of Analytic Functions, Applied Mathematical Sciences, 2(9)(2008), 431-441.

2.
O. Altintas and Sh. Owa, Majorizations and quasi-subordinations for certain analytic functions, Proc. Japan Acad. Ser. A Math. Sci., 68(7)(1992), 181-185. crossref(new window)

3.
P. N. Chichra, Regular functions f(z) for which zf'(z) is ${\alpha}$-spirallike, Proc. Amer. Math. Soc., 49(1975), 151-160.

4.
P. L. Duren, 'Univalent functions', Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1983.

5.
M. Fekete and G. Szego, Eine bemerkung uberungerade schlichte funktionen, J. Lond. Math. Soc., 8(1933), 85-89.

6.
P. Goswami and M. K. Aouf, Majorization properties for certain classes of analytic functions using the Scalcagean operator, Appl. Math. Lett., 23(11)(2010), 1351-1354. crossref(new window)

7.
Y. Hashidume and Sh. Owa, Majorization problems for certain analytic functions, Int. J. Open Problems Compt. Math., 1(3)(2008), 179-187.

8.
S. Kanas, An unified approach to the Fekete-Szego problem, Appl. Math. Comput., 218(2012), 8453-8461. crossref(new window)

9.
S. Kanas, Differential subordination related to conic sections, J. Math. Anal. Appl., 317(2)(2006), 650-658. crossref(new window)

10.
S. Kanas, Subordinations for domains bounded by conic sections, Bull. Belg. Math. Soc. Simon Stevin, 15(2008), 1-10.

11.
S. Kanas, Techniques of the differential subordination for domains bounded by conic sections, Int. J. Math. Math. Sci., 38(2003), 2389-2400.

12.
S. Kanas, O. Crisan, Differential subordinations involving arithmetic and geometric means, Appl. Math. Comput., 222(2013), 123-131. crossref(new window)

13.
S. Kanas and H. E. Darwish, Fekete-Szego problem for starlike and convex functions of complex order, Appl. Math. Letters, 23(2010), 777-782. crossref(new window)

14.
F. R. Keogh and E. P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc., 20(1969), 8-12. crossref(new window)

15.
R. J. Libera, Univalent ${\alpha}$-spiral functions, Canad. J. Math., 19(1967), 449-456. crossref(new window)

16.
T. H. MacGregor, Majorization by univalent functions, Duke Math. J., 34(1967), 95-102. crossref(new window)

17.
W. Ma and D. Minda, A unified treatment of some special classes of univalent functions, in Proceedings of the conference on complex Analysis, Z. Li, F. Ren, L. Lang and S. Zhang (Eds.), Int. Press (1994), 157-169.

18.
S. S. Miller and P. T. Mocanu, Differential subordinations: Theory and Applications, Marcel Dekker, Inc., New York, 2000.

19.
M. H. Mohd and M. Darus, Fekete-Szego problems for quasi-subordination classes, Abstr. Appl.Anal. (2012), Art. ID 192956, 1-14.

20.
G. Murugusundaramoorthy, S. Kavitha and T. Rosy, On the Fekete-Szego problem for some subclasses of analytic functions defined by convolution, Proc. Pakistan Acad. Sci., 44(2007), 249-254.

21.
V. Ravichandran, Y. Polatoglu, M. Bolcal and A. Sen, Certain subclasses of starlike and convex functions of complex order, Hacet. J. Math. Stat., 34(2005), 9-15.

22.
M. S. Robertson, Quasi-subordination and coefficient conjectures, Bull. Amer. Math. Soc., 76(1970), 1-9. crossref(new window)

23.
M. S. Robertson, On the theory of univalent functions, Ann. of Math., 37(1936), 374-408. crossref(new window)

24.
T. N. Shanmugam and S. Sivasubramanian, On the Fekete-Szego problem for some subclasses of analytic functions, J. Inequal. Pure Appl. Math., 6(3)(2005), 1-15.

25.
H. M. Srivastava, A. K. Mishra and M. K. Das, The Fekete-Szego problem for a subclass of close-to-convex functions, Complex Variables Theory Appl., 44(2001), 145-163. crossref(new window)