JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Geometry of Energy and Bienergy Variations between Riemannian Manifolds
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 55, Issue 3,  2015, pp.715-730
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2015.55.3.715
 Title & Authors
Geometry of Energy and Bienergy Variations between Riemannian Manifolds
CHERIF, AHMED MOHAMED; DJAA, MUSTAPHA;
  PDF(new window)
 Abstract
In this note, we extend the definition of harmonic and biharmonic maps via the variation of energy and bienergy between two Riemannian manifolds. In particular we present some new properties for the generalized stress energy tensor and the divergence of the generalized stress bienergy.
 Keywords
Energy variation;L-harmonic maps;L-biharmonic maps;Stress L-bi-energy tensors;
 Language
English
 Cited by
1.
General f-harmonic morphisms, Arab Journal of Mathematical Sciences, 2016, 22, 2, 275  crossref(new windwow)
 References
1.
M. Ara, Geometry of F-harmonic maps, Kodai Math. J., 22(1999), 243-263. crossref(new window)

2.
P. Baird, J. C. Wood, Harmonic morphisms between Riemannain manifolds, Clarendon Press Oxford 2003.

3.
Y. J. Chiang, f-biharmonic Maps between Riemannian Manifolds, Department of Mathematics, University of Mary Washington Fredericksburg, VA 22401, USA 2012.

4.
Y.-J. Chiang and H. Sun,Biharmonic maps on V-manifolds, Int. J. Math. Math. Sci., 27(8)(2001), 477-484. crossref(new window)

5.
N. Course, f-harmonic maps which map the boundary of the domain to one point in the target, New York Journal of Mathematics, 13(2007), 423-435.

6.
A.M. Cherif and M. Djaa, On generalized f-harmonic morphisms, Comment. Math. Univ. Carolin., 55(1)(2014), 1727.

7.
M. Djaa and A. M. Cherif, On Generalized f-biharmonic Maps and Stress f-bienergy Tensor, Journal of Geometry and Symmetry in Physics JGSP, 29(2013), 65-81.

8.
M. Djaa, A. M. Cherif, K. Zegga S. Ouakkas, On the Generalized of f-harmonic and f-bi-harmonic Maps, International Electronic Journal of Geometry, 1(2012), 1-11.

9.
J. Eells, p-Harmonic and Exponentially Harmonic Maps, lecture given at Leeds University, June 1993.

10.
J. Eells and J.H. Sampson, Harmonic mappings of riemannian manifolds, Amer. J. Math., 86(1964), 109-160. crossref(new window)

11.
S. Feng and Y. Han, Liouville Type Theorems of f-Harmonic Maps with Potential, Results in Mathematics, 66(2014), 43-64. crossref(new window)

12.
G. Y. Jiang, 2-Harmonic Maps Between Riemannian Manifolds, Annals of Math., China, 7A(4)(1986), 389-402.

13.
E. Loubeau and C. Oniciuc. On the biharmonic and harmonic indices of the hopf map, Transactions of the american mathematical society., 359(2007), 5239-5256. crossref(new window)

14.
E. Loubeau, S. Montaldo, And C. Oniciuc, the stress-energy tensor for biharmonic maps, arXiv:math/0602021v1 [math.DG] 1 Feb 2006.

15.
S. Ouakkas, R. Nasri and M. Djaa. On the f-harmonic and f-biharmonic maps, J. P. Journal. of Geom. and Top., 10(1)(2010), 11-27.

16.
Y. L. Ou, On f-harmonic morphisms between Riemannian manifolds, arxiv:1103.5687 (2011), Chinese Ann Math, series B (2014).