JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A Fixed Point on Generalised Cone Metric Spaces
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 55, Issue 4,  2015, pp.773-777
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2015.55.4.773
 Title & Authors
A Fixed Point on Generalised Cone Metric Spaces
PAL, SUDIP KUMAR; MAITY, MANOJIT;
  PDF(new window)
 Abstract
The aim of this paper is to prove a fixed point theorem on a generalised cone metric spaces for maps satisfying general contractive type conditions.
 Keywords
Generalised cone metric space;contractive mapping;fixed point;
 Language
English
 Cited by
 References
1.
A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of generalised metric spaces, Publ. Math. Debrecen, 57(2000), 31-37.

2.
D. W. Boyd and J. S. W. Wong, On nonlinear contraction, Proc. Amer. Math. Soc., 20(1996), 458-464.

3.
L. J. B. Ciric, A generalization of Banach's contraction principle, Proc. Amer. Math. Soc., 45(1974), 267-273.

4.
P. Das, A fixed point theorem on a class of generalized metric spaces, Korean J. Math. Sci., 9(2002), 29-33.

5.
P. Das and L. K. Dey, Fixed point of contractive mappings in generalized metric spaces, Math. Slovaca, 59(4)(2009), 499-504.

6.
M. Edelstein, On fixed point and periodic points under contraction mappings, J. London Math. Soc., 37(2)(1962), 74-79.

7.
D. Ilic and V. Rakocevic, Common fixed points for maps on cone metric space, J. Math. Anal. Appl., 341(2008), 876-882. crossref(new window)

8.
B. K. Lahiri and P. Das, Fixed point of a Ljubomir  Ciric's quasi-contraction mapping in a generalized metric space, Publ. Math. Debrecen 61(2002), 589-594.

9.
H. Long-Guang and Z. Xian, Cone metric spaces and fixed point theorems of contractive mapping, J. Math. Anal. Appl. 322(2007), 1468-1476.

10.
J. O. Olaeru and H. Akewe, An extension of Gregus fixed point theorem, Fixed Point Theory Appl., (2007), Article ID 657914.

11.
E. Rakotch, A note on contractive mappings, Proc. Amer. Math. Soc. 13(1962), 459-465. crossref(new window)

12.
S. Reich and A. J. Zaslavski, Almost all non-expansive mappings are contractive, C. R. Math. Acad. Sci. Soc. R. Can., 22(2000), 118-124.

13.
S. Reich and A. J. Zaslavski, The set of non contractive mappings is ${\sigma}$-porous in the space of all non-expansive mappings, C. R. Math. Acad. Sci. Paris, 333(2001), 539-544. crossref(new window)