JOURNAL BROWSE
Search
Advanced SearchSearch Tips
The Kauman Polynomial and Trivalent Graphs
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 55, Issue 4,  2015, pp.779-806
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2015.55.4.779
 Title & Authors
The Kauman Polynomial and Trivalent Graphs
CAPRAU, CARMEN; TIPTON, JAMES;
  PDF(new window)
 Abstract
We construct a state model for the two-variable Kauman polynomial using planar trivalent graphs. We also use this model to obtain a polynomial invariant for a certain type of trivalent graphs embedded in .
 Keywords
braids;invariants for graphs and links;Kauman polynomial;knotted graphs;
 Language
English
 Cited by
 References
1.
J. W. Alexander, A lemma on systems of knotted curves, Proc. Nat. Acad. Sci., USA, 9(1923), 93-95.

2.
J. S. Birman, Braids, links and mapping class groups, Annals of Math Study, no 82. Princeton University Press (1974).

3.
J. S. Birman and H. Wenzl, Braids, link polynomial and a new algebra, Trans. Amer. Math. Soc., 313(1)(1989), 249-273. crossref(new window)

4.
R. P. Carpentier, From planar graphs to embedded graphs - a new approach to Kauffman and Vogel's polynomial, J. Knot Theory Ramifications, 9(8)(2000), 975-986. crossref(new window)

5.
L. H. Kauffman, Invariants of graphs in three-space, Trans. Amer. Math. Soc., 311(2)(1989), 697-710. crossref(new window)

6.
L. H. Kauffman, An invariant of regular isotopy, Trans. Amer. Math. Soc., 318(2)(1990), 417-471. crossref(new window)

7.
L. H. Kauffman, Knots and Physics, Third edition. Series on Knots and Everything, Vol. 1, World Sci. Pub. (2001).

8.
L. H. Kauffman and P. Vogel, Link polynomials and a graphical calculus, J. Knot Theory Ramifications, 1(1992), 59-104. crossref(new window)

9.
A. Ishii, Moves and invariants for knotted handlebodies, Algebr. Geom. Topol., 8(2008), 1403-1418. crossref(new window)

10.
J. Murakami, The Kauffman polynomial of links and representation theory, Osaka J. Math., 24(1987), 745-758.

11.
H. Murakami, T. Ohtsuki and S. Yamada, Homfly polynomial via an invariant of colored plane graphs, L'Enseignement Mathematique, 44(1998), 325-360.

12.
S. Suzuki, On linear graphs in 3-sphere, Osaka J. Math., 7(1970), 375-396.