JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Some Analogues of a Result of Vasconcelos
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 55, Issue 4,  2015, pp.817-826
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2015.55.4.817
 Title & Authors
Some Analogues of a Result of Vasconcelos
DOBBS, DAVID EARL; SHAPIRO, JAY ALLEN;
  PDF(new window)
 Abstract
Let R be a commutative ring with total quotient ring K. Each monomorphic R-module endomorphism of a cyclic R-module is an isomorphism if and only if R has Krull dimension 0. Each monomorphic R-module endomorphism of R is an isomorphism if and only if R
 Keywords
Commutative ring;cyclic module;monomorphism;Krull dimension;monoid ring;integral domain;pullback;treed domain;pseudo-valuation domain;total quotient ring;localization;
 Language
English
 Cited by
 References
1.
D. D. Anderson, J. Coykendall, L. Hill and M. Zafrullah, Monoid domain constructions of antimatter domains, Comm. Algebra, 35(2007), 3236-3241. crossref(new window)

2.
D. F. Anderson and D. E. Dobbs, Pairs of rings with the same prime ideals, Canad. Math. J., 2(1980), 363-384.

3.
J. Coykendall, D. E. Dobbs and B. Mullins, On integral domains with no atoms, Comm. Algebra, 27(1999), 5813-5831. crossref(new window)

4.
I. S. Cohen and A. Seidenberg, Prime ideals and integral dependence, Bull. Amer. Math. Soc., 52(1946), 252-261. crossref(new window)

5.
D. E. Dobbs, On going-down for simple overrings, II, Comm. Algebra, 1(1974), 439-458. crossref(new window)

6.
D. E. Dobbs, Coherence, ascent of going-down and pseudo-valuation domains, Houston J. Math., 4(1978), 551-567.

7.
D. E. Dobbs, Treed domains have grade 1, Internat. J. Commut. Rings, 2(2003), 43-46.

8.
M. Fontana, Topologically defined classes of commutative rings, Ann. Mat. Pura Appl., 123(1980), 331-355. crossref(new window)

9.
R. Gilmer, Multiplicative Ideal Theory, Dekker, New York, 1972.

10.
R. Gilmer, Commutative Semigroup Rings, Univ. Chicago Press, Chicago/London, 1984.

11.
J. R. Hedstrom and E. G. Houston, Pseudo-valuation domains, Pacific J. Math., 75(1978), 137-147. crossref(new window)

12.
J. A. Huckaba, Commutative Rings with Zero Divisors, Dekker, New York, 1988.

13.
I. Kaplansky, Commutative Rings, rev. ed., Univ. Chicago Press, Chicago/London, 1974.

14.
W. V. Vasconcelos, Injective endomorphisms of finitley generated modules, Proc. Amer. Math. Soc., 25(1970), 900-901.