JOURNAL BROWSE
Search
Advanced SearchSearch Tips
On Commutativity of σ-Prime Γ-Rings
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 55, Issue 4,  2015, pp.827-835
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2015.55.4.827
 Title & Authors
On Commutativity of σ-Prime Γ-Rings
DEY, KALYAN KUMAR; PAUL, AKHIL CHANDRA; DAVVAZ, BIJAN;
  PDF(new window)
 Abstract
Let U be a -square closed Lie ideal of a 2-torsion free -prime -ring M. Let be an automorphism of M such that on U, on U, and there exists in with . Then, . By applying this result, we generalize the results of Oukhtite and Salhi respect to -rings. Finally, for a non-zero derivation of a 2-torsion free -prime -ring, we obtain suitable conditions under which the -ring must be commutative.
 Keywords
-Rings with involution;-prime -rings;centralizing automorphisms;square closed Lie ideals;derivations;commutativity;-square closed ideal;
 Language
English
 Cited by
 References
1.
W. E. Barnes, On the ${\Gamma}$-rings of Nobusawa, Pacific J. Math., 8(1966), 411-422.

2.
Y. Ceven, Jordan left derivations on completely prime ${\Gamma}$-ring, C.U. Fen-Edebiyat Fakultesi Fen Bilimlere Dergisi, 23(2)(2002), 39-43.

3.
A. K. Halder and A. C. Paul, Commutativity of two torsion free ${\sigma}$-prime with non-zero derivations, Journal of Physical Sciences, 15(2011), 27-32.

4.
A. K. Halder and A. C. Paul, Jordan left derivations on Lie ideals of prime ${\Gamma}$-rings, Panjab Univ. Journal of Math., 44(2012), 23-29.

5.
I. N. Herstein, Topic in ring theory, Univ of Chicago Press, Chicago, 1969.

6.
M. F. Hoque and A. C. Paul, On centralizers of semiprime gamma rings, Int. Math. Forum, 6(13)(2011), 627-638.

7.
K. W. Jun and B. D. Kim, A note on Jordan left derivations, Bull. Korean Math. Soc., 33(2)(1996), 221-228.

8.
M. R. Khan, D. Arora and M. A. Khan, Remarks on derivations of ${\sigma}$-prime rings, Inter. Journal of Algebra, 4(16)(2010), 761-767.

9.
N. Nabusawa, On a generalization of the ring theory, Osaka J. Math., 1(1964), 65-75.

10.
L. Oukhtite and S. Salhi, On commutativity of ${\sigma}$-prime rings, Glas. Mat. Ser. III, 41(1)(2006), 57-64. crossref(new window)

11.
L. Oukhtite and S. Salhi, On derivations of ${\sigma}$-prime rings, Inter Journal of Algebra, 1(5)(2007), 241-246.

12.
L. Oukhtite and S. Salhi, ${\sigma}$-prime rings with a special kind of automorphism, Int. J. Contemp Math Sci., 2(3)(2004), 127-133.

13.
A. C. Paul and M. S. Uddin, Lie and Jordan structure in simple ${\Gamma}$-rings, Journal of Physical Sciences, 11(2010), 77-86.

14.
A. C. Paul and M. S. Uddin, Lie structure in simple gamma rings, International Journal of Pure and Applied Sciences and Technology, 4(2)(2010), 63-70.

15.
A. C. Paul and M. S. Uddin, Simple gamma rings with involutions, IOSR Journal of Mathematics, 4(3)(2012), 40-48.

16.
M. Sapanci and A. Nakajima, Jordan derivations on completely prime gamma rings, Math. Japonica, 46(1)(1997), 47-51.