JOURNAL BROWSE
Search
Advanced SearchSearch Tips
On Divisorial Submodules
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 55, Issue 4,  2015, pp.871-883
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2015.55.4.871
 Title & Authors
On Divisorial Submodules
DARANI, AHMAD YOUSEFIAN; RAHMATINIA, MAHDI;
  PDF(new window)
 Abstract
This paper is devoted to study the divisorial submodules. We get some equivalent conditions for a submodule to be a divisorial submodule. Also we get equivalent conditions for to be a ring, where N, L are submodules of a module M.
 Keywords
divisorial submodule;prime submodule;radical submodule;multiplication module;
 Language
English
 Cited by
 References
1.
M. M. Ali, Invertibility of multiplication modules, New Zealand J. Math., 35(2006), 17-29.

2.
M. M. Ali, Invertibility of multiplication modules II, New Zealand J. Math., 39(2009), 45-64.

3.
M. M. Ali, Some remarks on generalized GCD domains, Comm. Algebra, 36(2008), 142-164. crossref(new window)

4.
M. M. Ali, Invertibility of multiplication modules III, New Zealand J. Math., 39(2009), 139-213. crossref(new window)

5.
M. M. Ali, Idempotent and nilpotent submodules of multiplication modules, Comm. Algebra, 36(2008), 4620-4642. crossref(new window)

6.
M. M. Ali, The transform formula for submodules of multiplication modules, New Zealand J. Math., 41(2011), 25-37.

7.
R. Ameri, On the prime submodules of multiplication modules, Internat. J. Math. Math. Sci., 27(2003), 1715-1724.

8.
A. Barnard, Multiplication modules, J. Algebra, 71(1981), 174-178. crossref(new window)

9.
Z. A. El-Bast and P. F. Smith, Multiplication modules, Comm. Algebra, 16(1998), 755-799.

10.
E. Houston, S. Kabbaj, T. Lucas and A. Mimouni When is the dual of an ideal a ring?, J. Algebra, 225(2000), 429-450. crossref(new window)

11.
M. Fontana, J. Hukaba and I. Papick, Prufer Domains, Marcel Dekker, (1997).

12.
R. Gilmer, Multiplicative ideal theory, Marcel Dekker: New York, (1972).

13.
M. D. Larsen and P. J. MacCaarthy, Multiplication theory of ideal, Academic Press: New York, (1971).

14.
A. G. Naoum, Flat modules and multiolication modules, Periodica. Math. Hungar., 21(1990), 309-317. crossref(new window)

15.
A. G. Naoum and F. H. Al-Alwan, Dedekind modules, Comm. Algebra, 24(1996), 225-230.

16.
P. F. Smith, Multiplication modules, Comm. Algebra, 16(1988), 755-799. crossref(new window)

17.
P. F. Smith, Some remarks on multiplication modules, Arch. der. Math., 50(1988), 223-235. crossref(new window)