JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Finite Operators and Weyl Type Theorems for Quasi-*-n-Paranormal Operators
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 55, Issue 4,  2015, pp.885-892
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2015.55.4.885
 Title & Authors
Finite Operators and Weyl Type Theorems for Quasi-*-n-Paranormal Operators
ZUO, FEI; YAN, WEI;
  PDF(new window)
 Abstract
In this paper, we mainly obtain the following assertions: (1) If T is a quasi-*-n-paranormal operator, then T is finite and simply polaroid. (2) If T or is a quasi-*-n-paranormal operator, then Weyl's theorem holds for f(T), where f is an analytic function on and is not constant on each connected component of the open set U containing . (3) If E is the Riesz idempotent for a nonzero isolated point of the spectrum of a quasi-*-n-paranormal operator, then E is self-adjoint and .
 Keywords
Quasi-*-n-paranormal operator;finite;polaroid;Weyl's theorem;Riesz idempotent;
 Language
English
 Cited by
 References
1.
P. Aiena, Fredholm and Local Spectral Theory with Applications to Multipliers, Kluwer Academic Publishers, London, 2004.

2.
P. Aiena, E. Aponte and E. Balzan, Weyl type theorems for left and right polaroid operators, Integr. Equ. Oper. Theory, 66(1)(2010), 1-20. crossref(new window)

3.
T. Furuta, Invitation to Linear Operators, Taylor & Francis, London, 2001.

4.
I. H. Jeon and I. H. Kim, On operators satisfying $T^*|T^2|T{\geq}T^*|T|^2T$, Linear Algebra Appl., 418(2006), 854-862. crossref(new window)

5.
K. B. Laursen and M. M. Neumann, Introduction to Local Spectral Theory, Clarendon Press, Oxford, 2000.

6.
M. Y. Lee, S. H. Lee and C. S. Rhoo, Some remarks on the structure of k-$\ast$-paranormal operators, Kyungpook Math. J., 35(1995), 205-211.

7.
S. Mecheri, Finite operators, Demonstratio Math., 35(2)(2002), 357-366.

8.
M. Oudghiri, Weyl's theorem and purturbations, Integr. Equ. Oper. Theory, 53(4)(2005), 535-545. crossref(new window)

9.
S. M. Patel, Contributions to the Study of Spectraloid Operators, PhD, Delhi Univ, DE, India, 1974.

10.
V. Rakocevic, Operators obeying a-Weyl's theorem, Rev. Roumaine Math. Pures Appl., 34(10)(1989), 915-919.

11.
J. L. Shen and Alatancang, The spectral properties of quasi-$\ast$-paranormal operators, Chinese Annals of Mathematics (China), 34(6)(2013), 663-670.

12.
J. Stampfli, Hyponormal operators and spectral density, Trans. Amer. Math. Soc., 117(1965), 469-476. crossref(new window)

13.
K. Tanahashi, I. H. Jeon, I. H. Kim and A. Uchiyama, Quasinilpotent part of class A or (p, k)-quasihyponormal operators, Operator Theory, Advances and Applications, 187(2008), 199-210.

14.
K. Tanahashi and A. Uchiyama, A note on $\ast$-paranormal operators and related classes of operators, Bull. Korean Math. Soc., 51(2)(2014), 357-371. crossref(new window)

15.
A. Uchiyama, On the isolated points of the spectrum of paranomal operators, Integr. Equ. Oper. Theory, 55(2006), 145-151. crossref(new window)

16.
J. P. Williams, Finite operators, Proc. Amer. Math. Soc., 26(1970), 129-135. crossref(new window)

17.
J. T. Yuan and Z. S. Gao, Weyl spectrum of class A(n) and n-paranomal operators, Integr. Equ. Oper. Theory, 60(2008), 289-298. crossref(new window)

18.
F. Zuo, On quasi-$\ast$-n-paranormal operators, J. Math. Inequal., 9(2)(2015), 409-415.

19.
F. Zuo and J. L. Shen, A note on $\ast$-n-paranormal operators, Adv. Math. (China), 42(2)(2013), 156-163.