JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Some Paranormed Difference Sequence Spaces Derived by Using Generalized Means
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 55, Issue 4,  2015, pp.909-931
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2015.55.4.909
 Title & Authors
Some Paranormed Difference Sequence Spaces Derived by Using Generalized Means
MANNA, ATANU; MAJI, AMIT; SRIVASTAVA, PARMESHWARY DAYAL;
  PDF(new window)
 Abstract
This paper presents some new paranormed sequence spaces where defined by using generalized means and difference operator. It is shown that these are complete linear metric spaces under suitable paranorms. Furthermore, the -, -, -duals of these sequence spaces are computed and also obtained necessary and sufficient conditions for some matrix transformations from to X. Finally, it is proved that the sequence space is rotund when > 1 for all n and has the Kadec-Klee property.
 Keywords
Sequence spaces;Difference operator;Generalized means;-, -, -duals;Matrix transformations;Rotundity;Kadec-Klee property;
 Language
English
 Cited by
 References
1.
A. Kananthai, M. Mursaleen, W. Sanhan and S. Suantai, On property (H) and rotundity of difference sequence spaces, J. Nonlinear Convex Anal., 3(3)(2002), 401-409.

2.
A. M. Jarrah and E. Malkowsky, Ordinary, absolute and strong summability and matrix transformations, Filomat, 17(2003), 59-78.

3.
A. Wilansky, Summability through Functional Analysis, North-Holland Math. Stud., 85, Else-vier Science Publishers, Amsterdam, New York, Oxford, 1984

4.
B. Altay and F. Basar, Some paranormed Riesz sequence spaces of non-absolute type, Southeast Asian Bull. Math., 30(4)(2006), 591-608.

5.
B. Altay and F. Basar, On the paranormed Riesz sequence spaces of non-absolute type, Southeast Asian Bull. Math., 26(5)(2003), 701-715.

6.
B. Altay and F. Basar, Some paranormed sequence spaces of non-absolute type derived by weighted mean, J. Math. Anal. Appl., 319(2)(2006), 494-508. crossref(new window)

7.
B. Altay and F. Basar, Generalization of the sequence space l(p) derived by weighted mean, J. Math. Anal. Appl., 330(1)(2007), 174-185. crossref(new window)

8.
B. Choudary and S. K. Mishra, On Kothe-Toeplitz duals of certain sequence spaces and their matrix transformations, Indian J. Pure Appl. Math., 24(5)(1993), 291-301.

9.
C. Aydin and F. Basar, Some new difference sequence spaces, Appl. Math. Comput., 157(3)(2004), 677-693. crossref(new window)

10.
C. Wu, S. Chen and Y. Wang, H-property of sequence Orlicz spaces, J. Harbin Inst. Tech. Math Issue, (1985), 6-11.

11.
F. Basar and B. Altay, Matrix mappings on the space bs(p) and its ${\alpha}-,\;{\beta}-,\;{\gamma}-$ duals, Aligarh Bull. Math., 21(1)(2002), 79-91.

12.
H. Hudzik and D. Pallaschke, On some convexity property of Orlicz sequence spaces, Math. Nachr., 186(1997), 167-185.

13.
H. Kizmaz, On certain sequence spaces, Canad. Math. Bull., 24(2)(1981), 169-176. crossref(new window)

14.
I. J. Maddox, Paranormed sequence spaces generated by infinite matrices, Proc. Cambridge Philos. Soc., 64(1968), 335-340. crossref(new window)

15.
K. G. Grosse-Erdmann, Matrix transformations between the sequence spaces of Maddox, J. Math. Anal. Appl., 180(1)(1993), 223-238. crossref(new window)

16.
M. Basarir, Paranormed Cesaro difference sequence space and related matrix transformations, Doga Mat., 15(1)(1991), 14-19.

17.
M. Mursaleen and A. K. Noman, On generalized means and some related sequence spaces, Comput. Math. Appl., 61(4)(2011), 988-999. crossref(new window)

18.
R. Colak, M. Et, On some generalized difference sequence spaces and related matrix transformations, Hokkaido Math. J., 26(3)(1997), 483-492. crossref(new window)

19.
S. T. Chen, Geometry of Orlicz spaces, Dissertationes Math. (1996), p. 356.

20.
S. Demiriz and C. Cakan, On some new paranormed sequence spaces, Gen. Math. Notes, 1(2)(2010), 26-42.

21.
S. Demiriz and C. Cakan, Some new paranormed difference sequence spaces and weighted core, Comput. Math. Appl., 64(6)(2012), 1726-1739. crossref(new window)

22.
V. Karakaya and H. Polat, Some new paranormed sequence spaces defined by Euler and difference operators, Acta Sci. Math. (Szeged), 76(1-2)(2010), 87-100.

23.
W. Orlicz, A note on modular spaces I, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 9(1961), 157-162.

24.
Y. Cui and H. Hudzik, On the Uniform Opial property in some modular sequence spaces, Func. Approx. Comment., 26(1998), 93-102.

25.
Z. U. Ahmad and M. Mursaleen, Kothe-Toeplitz duals of some new sequence spaces and their matrix maps, Publ. Inst. Math. (Beograd), 42(56)(1987), 57-61.