JOURNAL BROWSE
Search
Advanced SearchSearch Tips
On a Class of Spirallike Functions associated with a Fractional Calculus Operator
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 55, Issue 4,  2015, pp.953-967
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2015.55.4.953
 Title & Authors
On a Class of Spirallike Functions associated with a Fractional Calculus Operator
SELVAKUMARAN, KUPPATHAI APPASAMY; BALACHANDAR, GEETHA; RAJAGURU, PUGAZHENTHI;
  PDF(new window)
 Abstract
In this article, by making use of a linear multiplier fractional differential operator , we introduce a new subclass of spiral-like functions. The main object is to provide some subordination results for functions in this class. We also find sufficient conditions for a function to be in the class and derive Fekete- inequalities.
 Keywords
Analytic functions;-spirallike functions of order ;Fractional differential operator;Fekete- problem;Subordination;
 Language
English
 Cited by
 References
1.
F. M. Al-Oboudi, On univalent functions defined by a generalized Salagean operator, Int. J. Math. Math. Sci., 2004(25-28), 1429-1436. crossref(new window)

2.
F. M. Al-Oboudi and K. A. Al-Amoudi, On classes of analytic functions related to conic domains, J. Math. Anal. Appl., 339(1)(2008), 655-667. crossref(new window)

3.
F. M. Al-Oboudi and K. A. Al-Amoudi, Subordination results for classes of analytic functions related to conic domains defined by a fractional operator, J. Math. Anal. Appl., 354(2)(2009), 412-420. crossref(new window)

4.
E. Deniz, M. Caglar and H. Orhan, The Fekete-Szego problem for a class of analytic functions defined by Dziok-Srivastava operator, Kodai Math. J., 35(3)(2012), 439-462. crossref(new window)

5.
M. Fekete and G. Szego, Eine Bemerkung Uber Ungerade Schlichte Funktionen, J. London Math. Soc., 8(1933), 85-89.

6.
F. R. Keogh and E. P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc., 20(1969), 8-12. crossref(new window)

7.
O. S. Kwon and S. Owa, The subordination theorem for $\lambda$-spirallike functions of order ${\alpha}$, Int. J. Appl. Math., 11(2)(2002), 113-119.

8.
R. J. Libera, Univalent ${\alpha}$-spiral functions, Canad. J. Math., 19(1967), 449-456. crossref(new window)

9.
S. S. Miller and P. T. Mocanu, Differential subordinations, Monographs and Textbooks in Pure and Applied Mathematics, 225, Dekker, New York, 2000.

10.
A. K. Mishra and P. Gochhayat, Fekete-Szego problem for a class defined by an integral operator, Kodai Math. J., 33(2)(2010), 310-328. crossref(new window)

11.
G. Murugusundaramoorthy, Subordination results for spiral-like functions associated with the Srivastava-Attiya operator Integral Transforms Spec. Funct., 23(2)(2012), 97-103. crossref(new window)

12.
H. Orhan, D. Raducanu, M. Caglar and Mustafa Bayram, Coefficient estimates and other properties for a class of spirallike functions associated with a differential operator, Abstr. Appl. Anal., 2013, Art. ID 415319, 7 pp.

13.
S. Owa, On the distortion theorems. I, Kyungpook Math. J., 18(1)(1978), 53-59.

14.
S. Owa and H. M. Srivastava, Univalent and starlike generalized hypergeometric functions, Canad. J. Math., 39(5)(1987), 1057-1077. crossref(new window)

15.
A. Pfluger, The Fekete-Szego inequality for complex parameters, Complex Variables Theory Appl., 7(1-3)(1986), 149-160. crossref(new window)

16.
G. S. Salagean, Subclasses of univalent functions, in Complex analysis-fifth Romanian-Finnish seminar, Part 1 (Bucharest, 1981), 362-372, Lecture Notes in Math., 1013, Springer, Berlin.

17.
C. Selvaraj and K. A. Selvakumaran, Fekete-Szego problem for some subclasses of analytic functions, Far East J. Math. Sci., (FJMS) 29(3)(2008), 643-652.

18.
H. Silverman, Sufficient conditions for spiral-likeness, Internat. J. Math. Math. Sci., 12(4)(1989), 641-644. crossref(new window)

19.
S. Singh, A subordination theorem for spirallike functions, Int. J. Math. Math. Sci., 24(7)(2000), 433-435. crossref(new window)

20.
L. Spacek, Contribution a la theorie des fonctions univalentes, Casopis Pro Pestovani Matematiky a Fysiky, 62(1933), 12-19.

21.
H. M. Srivastava and A. K. Mishra, Applications of fractional calculus to parabolic starlike and uniformly convex functions, Comput. Math. Appl., 39(3-4)(2000), 57-69.

22.
H. M. Srivastava, A. K. Mishra and M. K. Das, The Fekete-Szego problem for a subclass of close-to-convex functions, Complex Variables Theory Appl., 44(2)(2001), 145-163. crossref(new window)

23.
H. M. Srivastava, A. K. Mishra and S. N. Kund, Certain classes of analytic functions associated with iterations of the Owa-Srivastava fractional derivative operator, Southeast Asian Bull. Math., 37(3)(2013), 413-435.

24.
H. S. Wilf, Subordinating factor sequences for convex maps of the unit circle, Proc. Amer. Math. Soc., 12(1961), 689-693. crossref(new window)