JOURNAL BROWSE
Search
Advanced SearchSearch Tips
On some Bounds for the Parameter λ in Steffensen`s Inequality
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 55, Issue 4,  2015, pp.969-981
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2015.55.4.969
 Title & Authors
On some Bounds for the Parameter λ in Steffensen`s Inequality
PECARIC, JOSIP; KALAMIR, KSENIJA SMOLJAK;
  PDF(new window)
 Abstract
The object is to obtain weaker conditions for the parameter in Steffensen`s inequality and its generalizations and refinements additionally assuming nonnegativity of the function f. Furthermore, we contribute to the investigation of the Bellman-type inequalites establishing better bounds for the parameter .
 Keywords
Steffensen`s inequality;generalizations;Bellman-type inequality;
 Language
English
 Cited by
 References
1.
R. Bellman, On inequalities with alternating signs, Proc. Amer. Math. Soc., 10(5)(1959), 807-809. crossref(new window)

2.
Z. Liu, On extensions of Steffensen's inequality, J. Math. Anal. Approx. Theory, 2(2)(2007), 132-139.

3.
P. R. Mercer, Extensions of Steffensen's inequality, J. Math. Anal. Appl., 246(1)(2000), 325-329. crossref(new window)

4.
B. G. Pachpatte, A note on a certain generalization of Steffensen's inequality, Octogon Math. Mag., 6(1)(1998), 46-49.

5.
J. E. Pecaric, Notes on some general inequalities, Publ. Inst. Math. (Beograd), (N. S.), 32(46)(1982), 131-135.

6.
J. Pecaric, A. Perusic and K. Smoljak, Mercer and Wu-Srivastava generalisations of Steffensen's inequality, Appl. Math. Comput., 219(21)(2013), 10548-10558. crossref(new window)

7.
J. Pecaric and K. Smoljak Kalamir, Generalized Steffensen type inequalities involving convex functions, J. Funct. Spaces, 2014(2014), Article ID 428030, 10 pages.

8.
J. Pecaric and K. Smoljak, Steffensen type inequalities involving convex functions, Math. Inequal. Appl., 18(1)(2015), 363-378.

9.
J. Pecaric and K. Smoljak Kalamir, New Steffensen type inequalities involving convex functions, Results Math., 67(1)(2015), 217-234. crossref(new window)

10.
J. Pecaric, K. Smoljak Kalamir and S. Varosanec, Steffensen's and related inequalities (A comprehensive survey and recent advances), Monographs in inequalites 7, Element, Zagreb, 2014.

11.
J. F. Steffensen, On certain inequalities between mean values and their application to actuarial problems, Skand. Aktuarietids., (1918), 82-97.

12.
S.-H. Wu and H. M. Srivastava, Some improvements and generalizations of Steffensen's integral inequality, Appl. Math. Comput., 192(2)(2007), 422-428. crossref(new window)