JOURNAL BROWSE
Search
Advanced SearchSearch Tips
On 2-Absorbing and Weakly 2-Absorbing Primary Ideals of a Commutative Semiring
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 56, Issue 1,  2016, pp.107-120
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2016.56.1.107
 Title & Authors
On 2-Absorbing and Weakly 2-Absorbing Primary Ideals of a Commutative Semiring
Soheilnia, Fatemeh;
  PDF(new window)
 Abstract
Let R be a commutative semiring. The purpose of this note is to investigate the concept of 2-absorbing (resp., weakly 2-absorbing) primary ideals generalizing of 2-absorbing (resp., weakly 2-absorbing) ideals of semirings. A proper ideal I of R said to be a 2-absorbing (resp., weakly 2-absorbing) primary ideal if whenever such that (resp., ), then either or or . Moreover, when I is a Q-ideal and P is a k-ideal of R/I with , it is shown that if P is a 2-absorbing (resp., weakly 2-absorbing) primary ideal of R, then P/I is a 2-absorbing (resp., weakly 2-absorbing) primary ideal of R/I and it is also proved that if I and P/I are weakly 2-absorbing primary ideals, then P is a weakly 2-absorbing primary ideal of R.
 Keywords
Semirings;Primary ideals;Weakly primary ideals;2-Absorbing primary ideals;Weakly 2-absorbing primary ideals;
 Language
English
 Cited by
 References
1.
P. J. Allen, A fundamental theorem of homomorphisms for semirings, Proc. Amer . Math . Soc., 21(1969), 412-416. crossref(new window)

2.
P. J. Allen, J. NeggersIdeal, Theory in commutative A-semirings, Kyungpook Math. J., 46(2006), 261-271.

3.
S. E. Atani, The ideal theory in quotient of commutative semirings, Glasnik Matematicki, 42(62)(2007), 301-308. crossref(new window)

4.
S. E. Atani and F. Farzalipour, On weakly primary ideals, Georgian Math. J., 12(3)(2005), 423-429.

5.
S. E. Atani and A. G. Garfami, Ideals in quotient semirings, Chiang Mai J. Sci., 40(1)(2013), 77-82.

6.
A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc., 75(2007), 417-429. crossref(new window)

7.
A. Badawi, A. Yousefian Darani, On weakly 2-absorbing ideals of commutative rings, Houston J. Math., 39(2013), 441-452.

8.
A. Badawi, U. Tekir and E. Yetkin, On 2-absorbing primary ideals in commutative rings, Bull. Korean Math. Soc., 51(4)(2014), 1163-1173. crossref(new window)

9.
J. N. Chaudhari, 2-absorbing subtractive ideals in semimodules, Jornal of Advance Research in Pure Math., 5(2013), 118-124. crossref(new window)

10.
J. N. Chaudhari and K. J. Ingale, A note on strongly Euclidean semirings, International Journal of Algebra, 6(6)(2012), 271-275.

11.
J. N. Chaudhari and K. J. Ingale, On n-absorbing ideals of the semiring ${\mathbb{Z}}_0^+$, Journal of Advanced Research in Pure Math, 6(2014), 25-31. crossref(new window)

12.
J. S. Golan, Semiring and their applications, Kluwer Academic publisher, Dordrecht, 1999.

13.
V. Gupta and J. N. Chaudhari, Some remark on semirings, Rad. Mat., 12(2003), 13-18.

14.
Ch. B. Kim, On the quotient structure of k-semirings, J. Sinc. Institute Kookmin University of Korea, 2(1985), 11-16.

15.
Ch. B. Kim, A note on the localization in semirings, J. Sinc. Institute Kookmin University of Korea, 3(1985), 13-19.

16.
D. R. LaTorre A note on quotient semirings, Proc. Amer. Math. Soc., 24(1970), 463-465. crossref(new window)

17.
H. S. Vandive, Note on simple type of algebra in which the cancellation law of addition does not hold, Bull. Amer. Math. Soc., 40(1934), 914-920. crossref(new window)

18.
A. Yousefian Darani, On 2-absorbing and weakly 2-absorbing ideals of commutative semirings, Kyungpook Math. J., 52(2012), 91-97. crossref(new window)