JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Biharmonic Hypersurfaces with Constant Scalar Curvature in E5s
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 56, Issue 1,  2016, pp.273-293
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2016.56.1.273
 Title & Authors
Biharmonic Hypersurfaces with Constant Scalar Curvature in E5s
Deepika, Deepika; Gupta, Ram Shankar; Sharfuddin, A.;
  PDF(new window)
 Abstract
In this paper, we obtain that every biharmonic non-degenerate hypersurfaces in semi-Euclidean space with constant scalar curvature of diagonal shape operator has zero mean curvature.
 Keywords
Biharmonic submanifolds;Mean curvature vector;Chen`s conjecture;
 Language
English
 Cited by
 References
1.
A. Arvanitoyeorgos, F. Defever, G. Kaimakamis, V. Papantoniou, Biharmonic Lorentzian hypersurfaces in $E^4_1$, Pac. J. Math., 229(2)(2007), 293-305. crossref(new window)

2.
A. Balmus, Biharmonic Maps and Submanifolds Ph. D. thesis, Universita degli Studi di Cagliari, Italy, (2007).

3.
A. Balmus, S. Montaldo, C. Oniciuc, Classification results for biharmonic submanifolds in spheres, Israel. J. Math., 168(2008), 201-220. crossref(new window)

4.
A. Balmus, S. Montaldo, C. Oniciuc, Classification results and new examples of proper biharmonic submanifolds in spheres, Note Mat., 1(1)(2008), 49-61.

5.
A. Balmus, S. Montaldo, C. Oniciuc, Properties of biharmonic submanifolds in spheres, J. Geom. Symmetry Phys., 17(2010), 87-102.

6.
A. Balmus, S. Montaldo, C. Oniciuc, Biharmonic hypersurfaces in 4-dimensional space forms, Math. Nachr., 283(12)(2010), 1696-1705. crossref(new window)

7.
B. Y. Chen, Some open problems and conjectures on submanifolds of finite type, Soochow J. Math., 17(2)(1991), 169-188.

8.
B. Y. Chen, Classification of marginally trapped Lorentzian flat surfaces in $E^4_1$ and its application to biharmonic surfaces, J. Math. Anal. Appl., 340(2008), 861-875. crossref(new window)

9.
B. Y. Chen, S. Ishikawa, Biharmonic surfaces in pseudo-Euclidean spaces, Mem. Fac. Sci. Kyushu Univ., A 45(1991), 323-347.

10.
B. Y. Chen, S. Ishikawa, Biharmonic pseudo-Riemannian submanifolds in pseudo-Euclidean spaces, Kyushu J. Math., 52(1998), 1-18. crossref(new window)

11.
B. Y. Chen, M. I. Munteanu, Biharmonic ideal hypersurfaces in Euclidean spaces, Differ. Geom. Appl., 31(2013), 1-16. crossref(new window)

12.
Deepika, Ram Shankar Gupta, Biharmonic hypersurfaces in $E^5$ with zero scalar curvature, Afr. Diaspora J. Math., 18(1)(2015), 12-26.

13.
F. Defever, G. Kaimakamis, V. Papantoniou, Biharmonic hypersurfaces of the 4-dimensional semi-Euclidean space $E^4_s$, J. Math. Anal. Appl., 315(2006), 276-286. crossref(new window)

14.
I. Dimitric, Quadric representation and submanifolds of finite type, Doctoral thesis, Michigan State University, (1989).

15.
I. Dimitric, Submanifolds of $E^n$with harmonic mean curvature vector, Bull. Inst. Math. Acad. Sin, 20(1992), 53-65.

16.
J. Eells, J. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math., 86(1964), 109-160. crossref(new window)

17.
K. Akutagawa, S. Maeta, Biharmonic properly immersed submanifolds in Euclidean spaces, Geom. Dedicate, 164(2013), 351-355. crossref(new window)

18.
R. Caddeo, S. Montaldo, C. Oniciuc, Biharmonic submanifolds of $S^3$, Int. J. Math., 12(8)(2001), 867-876. crossref(new window)

19.
R. Caddeo, S. Montaldo, C. Oniciuc, Biharmonic submanifolds in spheres, Israel J. Math., 130(2002), 109-123. crossref(new window)

20.
Ram Shankar Gupta, On biharmonic hypersurfaces in Euclidean space of arbitrary dimension, Glasgow Math. J., 57 (2015), 633-642. crossref(new window)

21.
Ram Shankar Gupta, Biharmonic hypersurfaces in $E^5_s$, An. St. Univ. Al. I. Cuza, (accepted).

22.
T. Hasanis, T. Vlachos, Hypersurfaces in $E^4$ with harmonic mean curvature vector field, Math. Nachr., 172(1995), 145-169. crossref(new window)

23.
Yu Fu, Biharmonic hypersurfaces with three distinct principal curvatures in the Euclidean 5-space, Journal of Geometry and Physics, 75(2014), 113-119. crossref(new window)