JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Structures of Pseudo Ideal and Pseudo Atom in a Pseudo Q-Algebra
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 56, Issue 1,  2016, pp.95-106
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2016.56.1.95
 Title & Authors
Structures of Pseudo Ideal and Pseudo Atom in a Pseudo Q-Algebra
Jun, Young Bae; Kim, Hee Sik; Ahn, Sun Shin;
  PDF(new window)
 Abstract
As a generalization of Q-algebra, the notion of pseudo Q-algebra is introduced, and some of their properties are investigated. The notions of pseudo subalgebra, pseudo ideal, and pseudo atom in a pseudo Q-algebra are introduced. Characterizations of their properties are provided.
 Keywords
pseudo atom;pseudo subalgebra;pseudo ideal;pseudo Q-algebra;
 Language
English
 Cited by
 References
1.
S. S. Ahn and H. S. Kim, On QS-algebras, J. Chungcheong. Math. Soc., 12(1999), 33-41.

2.
M. A. Chaudhry, On BCH-algebras, Math. Japon., 4(1991), 665-676.

3.
J. M. Font, A. J. Rodrgez and A. Torrens,Wajsbergs Algebras, Stochastica, 8(1984), 5-31.

4.
G. Georgescu and A. Iorgulescu, Pseudo BCK-algebras, in: Proc. DMTS'01: Combinatorics, Computability and Logics, Springer, London, 2001, 97-114.

5.
Q. P. Hu and X. Li, On BCH-algebras, Math. Seminar Notes, 11(1983), 313-320.

6.
Q. P. Hu and X. Li, On proper BCH-algebras, Math. Japon., 30(1985), 659-661.

7.
K. Iseki, On BCI-algebras, Math. Seminar Notes, 8(1980), 125-130.

8.
K. Iseki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japon., 23(1978), 1-26.

9.
Y. B. Jun, H. S. Kim and J. Neggers, On pseudo d-algebras, Inform. Sci., 179(2009), 1751-1759. crossref(new window)

10.
Y. B. Jun, Characterizations of pseudo BCK-algebras, Sci. Math. Japon. Online, 7(2002), 225-230.

11.
J. Meng, Implicative commutative semigroups are equivalent to a class of BCK-algebras, Semigroup Forum, 50(1995), 89-96.

12.
J. Meng and Y. B. Jun, BCK-algebras, Kyung Moon Sa, Seoul, 1994.

13.
D. Mundici, MV -algebras are categorically equivalent to bounded commutative BCK-algebras, Math. Japon., 31(1986), 889-894.

14.
J. Neggers, S. S. Ahn and H. S. Kim, On Q-algebras, Inter. J. Math. and Math. Sci., 27(2001), 749-757. crossref(new window)

15.
E. H. Roh and S. Y. Kim, On BH$^*$-subalgebras of transitive BH$^*$-algebras, Far East J. Math. Sci., 1(1999), 255-263.