An Error Embedded Runge-Kutta Method for Initial Value Problems

- Journal title : Kyungpook mathematical journal
- Volume 56, Issue 2, 2016, pp.311-327
- Publisher : Department of Mathematics, Kyungpook National University
- DOI : 10.5666/KMJ.2016.56.2.311

Title & Authors

An Error Embedded Runge-Kutta Method for Initial Value Problems

Bu, Sunyoung; Jung, WonKyu; Kim, Philsu;

Bu, Sunyoung; Jung, WonKyu; Kim, Philsu;

Abstract

In this paper, we propose an error embedded Runge-Kutta method to improve the traditional embedded Runge-Kutta method. The proposed scheme can be applied into most explicit embedded Runge-Kutta methods. At each integration step, the proposed method is comprised of two equations for the solution and the error, respectively. These solution and error are obtained by solving an initial value problem whose solution has the information of the error at each integration step. The constructed algorithm controls both the error and the time step size simultaneously and possesses a good performance in the computational cost compared to the original method. For the assessment of the effectiveness, the van der Pol equation and another one having a difficulty for the global error control are numerically solved. Finally, a two-body Kepler problem is also used to assess the efficiency of the proposed algorithm.

Keywords

Error embedded Runge-Kutta method;Embedded Runge-Kutta method;Initial value problem;

Language

English

References

1.

https://www.dm.uniba.it/testset/testsetivpsolvers

2.

K. E. Atkinson, An introduction to numerical analysis, John Wiley & Sons, Inc., 1989.

3.

L. Brugnano, F. Iavernaro and D. Trigiante, Energy- and quadratic invariantspreserving integrators based upon Gauss collocation formulae, SIAM J. Numer. Anal., 50(2012), 2897-2916.

4.

S. Bu, J. Huang and M. L. Minion, Semi-implicit Krylov deferred correction methods for differential algebraic equations, Math. Comput., 81(280)(2012), 2127-2157.

5.

M. P. Calvo and E. Hairer, Accurate long-term integration of dynamical systems, Appl. Numer. Math., 18(1995), 95-105.

6.

J. R. Dormand and P. J. Prince, High order embedded Runge-Kutta formulae, J. Comput. Appl. Math., 7(1)(1981), 67-75.

7.

E. Fehlberg, Classical fifth-, sixth-, seventh-, and eighth-order Runge-Kutta formulas with stepsize control, NASA; for sale by the Clearinghouse for Federal Scientific and Technical Information, Springfield, VA, 1968.

8.

C. W. Gear, Numerical initial value problems in ordinary differential equations, Prentice-Hall, 1971.

9.

K. Gustafsson, Control-theoretic techniques for stepsize selection in implicit Runge-Kutta methods, ACM Trans. Math. Softw., 20(4)(1994), 496-517.

10.

E. Hairer, Long-time integration of non-stiff and oscillatory Hamiltonian systems, AIP Conf. Proc., 1168(1)(2009), 3-6.

11.

E. Hairer, S. P. Norsett and G. Wanner, Solving ordinary differential equations. I nonstiff, Springer Series in Computational Mathematics, Springer, 1993.

12.

E. Hairer and G. Wanner, Solving ordinary differential equations. II stiff and differential-algebraic problems, Springer Series in Computational Mathematics, Springer, 1996.

13.

C. Johnson, Error estimates and adaptive time-step control for a class of one-step methods for stiff ordinary differential equations, SIAM J. Numer. Anal., 25(4)(1988), 908-926.

14.

D. Kavetski, P. Binning and S. W. Sloan, Adaptive time stepping and error control in a mass conservative numerical solution of the mixed form of Richards equation, Adv. Water Resour., 24(2001), 595-605.

15.

P. Kim, X. Piao and S. D. Kim, An error corrected Euler method for solving stiff problems based on Chebyshev collocation, SIAM J. Numer. Anal. 49(2011), 2211-2230.

16.

S. D. Kim, X. Piao, D. H. Kim and P. Kim, Convergence on error correction methods for solving initial value problems, J. Comput. Appl. Math., 236(17)(2012), 4448-4461.

17.

P. Kim, E. Lee and S. D. Kim, Simple ECEM algorithms using function values only, Kyungpook Math. J., 53(2013), 573-591.

18.

P. Kim and S. Bu, Error Control Strategy in Error Correction Methods, Kyungpook Math. J., 55(2015), 301-311.

19.

G. Y. Kulikov and R. Weiner, Global error estimation and control in linearly-implicit parallel two-step peer W-methods, J. Comput. Appl. Math., 236(2011), 1226-1239.

21.

L. F. Shampine, Vectorized solution of ODEs in MATLAB, Scalable Comput., Pract. Exp., 10(2010), 337-345.