JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Behavior of Solutions of a Fourth Order Difference Equation
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 56, Issue 2,  2016, pp.507-516
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2016.56.2.507
 Title & Authors
Behavior of Solutions of a Fourth Order Difference Equation
Abo-Zeid, Raafat;
  PDF(new window)
 Abstract
In this paper, we introduce an explicit formula for the solutions and discuss the global behavior of solutions of the difference equation , where a, b, c are positive real numbers and the initial conditions , , , are real numbers.
 Keywords
difference equation;periodic solution;convergence;
 Language
English
 Cited by
 References
1.
R. Abo-Zeid and C. Cinar, Global behavior of the difference equation $x_{n+1}$ = $\frac{Ax_{n-1}}{B-Cx_nx_{n-2}}$, Bol. Soc. Paran. Mat.31(1)(2013), 43-49.

2.
R. Abo-Zeid, Global Attractivity of a Higher-Order Difference Equation, Discrete Dyn. Nat. Soc. Article ID930410(2012), 11 Pages.

3.
R. P. Agarwal, Difference Equations and Inequalities, First Edition, Marcel Dekker, 1992.

4.
M. Aloqeili, Dynamics of a rational difference equation, Appl. Math. Comput., 176(2006), 768-774.

5.
A. Andruch-Sobi, M. Migda, Further properties of the rational rercursive sequence $x_{n+1}$ = $\frac{ax_{n-1}}{b-cx_nx_{n-1}}$, Opuscula Math., 26(3)(2006), 387-394.

6.
A. Andruch-Sobi, M. Migda, On the rational recursive sequence $x_{n+1}$ = $x_{n+1}$ = $\frac{ax_{n-1}}{b-cx_nx_{n-1}}$, Tatra Mt. Math. Publ. 43(2009), 1-9.

7.
E. Camouzis and G. Ladas, Dynamics of Third-Order Rational Difference Equations; With Open Problems and Conjectures, Chapman and Hall/HRC Boca Raton, 2008.

8.
E. M. Elsayed, On the solution of some difference equations, Eur. J. Pure Appl. Math., 4(2011), 287-303.

9.
E. A. Grove and G. Ladas, Periodicities in Nonlinear Difference Equations, Chapman and Hall/CRC, 2005.

10.
G. Karakostas, Convergence of a difference equation via the full limiting sequences method, Diff. Eq. Dyn. Sys., 1(4)(1993), 289-294.

11.
V. L. Kocic, G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, Kluwer Academic, Dordrecht, 1993.

12.
N. Kruse and T. Nesemann, Global asymptotic stability in some discrete dynamical systems, J. Math. Anal. Appl., 253(1)(1999), 151-158.

13.
M. R. S. Kulenovic and G. Ladas, Dynamics of Second Order Rational Difference Equations; With Open Problems and Conjectures, Chapman and Hall/HRC Boca Raton, 2002.

14.
H. Levy and F. Lessman, Finite Difference Equations, Dover, New York, NY, USA, 1992.

15.
H. Sedaghat, Global behaviours of rational difference equations of orders two and three with quadratic terms, J. Diff. Eq. Appl., 15(3)(2009), 215-224. crossref(new window)

16.
S. Stevic, On positive solutions of a (k+1)th order difference equation, Appl. Math. Let., 19(5)(2006), 427-431. crossref(new window)

17.
S. Stevic, More on a rational recurrence relation, Appl. Math. E-Notes, 4(2004), 80-84.