JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Jacobi Operators with Respect to the Reeb Vector Fields on Real Hypersurfaces in a Nonflat Complex Space Form
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 56, Issue 2,  2016, pp.541-575
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2016.56.2.541
 Title & Authors
Jacobi Operators with Respect to the Reeb Vector Fields on Real Hypersurfaces in a Nonflat Complex Space Form
Ki, U-Hang; Kim, Soo Jin; Kurihara, Hiroyuki;
  PDF(new window)
 Abstract
Let M be a real hypersurface of a complex space form with almost contact metric structure (, , , g). In this paper, we prove that if the structure Jacobi operator $R_{\xi}
 Keywords
complex space form;real hypersurface;structure Jacobi operator;structure tensor;Ricci tensor;
 Language
English
 Cited by
1.
Structure Jacobi Operators of Real Hypersurfaces with Constant Mean Curvature in a Complex Space Form, Kyungpook mathematical journal, 2016, 56, 4, 1207  crossref(new windwow)
 References
1.
J. Berndt, Real hypersurfaces with constant principal curvatures in complex hyperblic spaces, J. Reine Angew. Math., 395(1989), 132-141.

2.
T. E. Cecil and P. J. Ryan, Focal sets and real hypersurfaces in complex projective space, Trans. Amer. Math. Soc., 269(1982), 481-499.

3.
J. T. Cho and U-H. Ki, Real hypersurfaces in complex projective spaces in terms of Jacobi operators, Acta Math. Hungar., 80(1998), 155-167. crossref(new window)

4.
J. T. Cho and U-H. Ki, Real hypersurfaces in complex space form with Reeb flow symmetric Jacobi operator, Canadian Math. Bull., 51(2008), 359-371. crossref(new window)

5.
U-H. Ki, I. -B. Kim and D. H. Lim, Characterizations of real hypersurfaces of type A in a complex space form, Bull. Korean Math. Soc., 47(2010), 1-15.

6.
U-H. Ki and H. Kurihara, Real hypersurfaces and ${\xi}$-parallel structure Jacobi operators in complex space forms, J. Korean Academy Sciences, Sciences Series, 48(2009), 53-78.

7.
U-H. Ki, H. Kurihara, S. Nagai and R. Takagi, Characterizations of real hypersurfaces of type A in a complex space form in terms of the structure Jacobi operator, Toyama Math. J., 32(2009), 5-23.

8.
U-H. Ki, H. Kurihara and R. Takagi, Jacobi operators along the structure flow on real hypersurfaces in a nonflat complex space form, Tsukuba J. Math., 33(2009), 39-56. crossref(new window)

9.
U-H. Ki, S. Nagai and R. Takagi, The structure vector field and structure Jacobi operator of real hypersurfaces in non at complex space forms, Geom. Dedicata, 149(2010), 161-176. crossref(new window)

10.
U-H. Ki and Y. J. Suh, On real hypersurfaces of a complex space form, Math J. Okayama Univ., 32(1990), 207-221.

11.
M. Kimura, Real hypersurfaces and complex submanifolds in complex projective space, Trans. Amer. Math. Soc., 296(1986), 137-149. crossref(new window)

12.
S. Montiel and A. Romero, On some real hypersurfaces of a complex hyperblic space, Geom Dedicata, 20(1986), 245-261. crossref(new window)

13.
M. Okumura, On some real hypersurfaces of a complex projective space, Trans. Amer. Math. Soc., 212(1975), 355-364. crossref(new window)

14.
M. Ortega, J. D. Perez and F. G. Santos, Non-existence of real hypersurfaces with parallel structure Jacobi operator in nonflat complex space forms, Rocky Mountain J. Math., 36(2006), 1603-1613. crossref(new window)

15.
J. D. Perez, F. G. Santos and Y. J. Suh Real hypersurfaces in complex projective spaces whose structure Jacobi operator is D-parallel, Bull. Belg. Math. Soc., 13(2006), 459-469.

16.
J. D. Perez, F. G. Santos and Y. J. Suh Real hypersurfaces in nonflat complex space forms with commuting structure Jacobi operator, Houston J. Math., 33(2007), 1005-1009.

17.
R. Takagi, On homogeneous real hypersurfaces in a complex projective space, Osaka J. Math., 19(1973), 495-506.

18.
R. Takagi, Real hypersurfaces in a complex projective space with constant principal curvatures I, II, J. Math. Soc., 15(1975), 43-53, 507-516.