JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Estimation of Geometric Mean for k Exponential Parameters Using a Probability Matching Prior
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Estimation of Geometric Mean for k Exponential Parameters Using a Probability Matching Prior
Kim, Hea-Jung; Kim, Dae Hwang;
  PDF(new window)
 Abstract
In this article, we consider a Bayesian estimation method for the geometric mean of exponential parameters, Using the Tibshirani`s orthogonal parameterization, we suggest an invariant prior distribution of the parameters. It is seen that the prior, probability matching prior, is better than the uniform prior in the sense of correct frequentist coverage probability of the posterior quantile. Then a weighted Monte Carlo method is developed to approximate the posterior distribution of the mean. The method is easily implemented and provides posterior mean and HPD(Highest Posterior Density) interval for the geometric mean. A simulation study is given to illustrates the efficiency of the method.
 Keywords
Bayesian estimation;geometric mean;invariant prior;weighted Monte Carlo method;
 Language
Korean
 Cited by
 References
1.
Bayesian Statistics 4, 1992. pp.205-206

2.
Journal of the American Statistical Association, 1989. vol.84. pp.200-207 crossref(new window)

3.
unpublished manuscript, 1992.

4.
Journal of Royal Statistical Society, 1979. vol.41. pp.113-147

5.
Journal of Computational and Graphical Statistics, 1999. vol.8. pp.69-92 crossref(new window)

6.
Journal of Royal Statistical Society, 1987. vol.49. pp.1-39

7.
American Statistician, 1987. vol.40. pp.1-11

8.
Bayesian Statistics 4, 1992. pp.195-210

9.
Monte Carlo Methods, 1964.

10.
Journal of Computational and Graphical Statistics, 1998. vol.7. pp.342-355 crossref(new window)

11.
Theory of Probability(3rd ed.), 1961.

12.
Monthly Labor Review, 1998.

13.
Sequential Methods in Statistics, 1985. pp.485-514

14.
Biometrika, 1989. vol.76. pp.604-608 crossref(new window)

15.
symposium on Monte Carlo Methods, 1956. pp.64-79

16.
Journal of Royal Statistical Society, 1963. vol.25. pp.318-329

17.
Technical Report 92-18, 1993.

18.
Biometrika, 1991. vol.78. pp.645-656 crossref(new window)