JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A Recursive Partitioning Rule for Binary Decision Trees
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A Recursive Partitioning Rule for Binary Decision Trees
Kim, Sang-Guin;
  PDF(new window)
 Abstract
In this paper, we reconsider the Kolmogorov-Smirnoff distance as a split criterion for binary decision trees and suggest an algorithm to obtain the Kolmogorov-Smirnoff distance more efficiently when the input variable have more than three categories. The Kolmogorov-Smirnoff distance is shown to have the property of exclusive preference. Empirical results, comparing the Kolmogorov-Smirnoff distance to the Gini index, show that the Kolmogorov-Smirnoff distance grows more accurate trees in terms of misclassification rate.
 Keywords
Komogorov-Smirnoff distance;Binary decision tree;Split criterion;
 Language
Korean
 Cited by
 References
1.
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.19. pp.1371-1375 crossref(new window)

2.
Classification and Regression Trees,

3.
Statistical Models in S,

4.
IEEE Transactions of Computers, vol.C-26. pp.404-408 crossref(new window)

5.
Journal of the American Statistical Association, vol.49. pp.732-764 crossref(new window)

6.
Annals of Statistics, vol.6. pp.515-533 crossref(new window)

7.
Applied Statistics, vol.29. pp.119-127 crossref(new window)

8.
UCI Repository of Machine Learning Databases,

9.
Statistics and Computing, vol.7. pp.209-216 crossref(new window)

10.
C4.5: Programs for Machine Learning,

11.
Pattern Recognition, vol.12. pp.313-317 crossref(new window)

12.
Statistics & Probability Letters, vol.54. pp.341-345 crossref(new window)

13.
Statistics and Computing, vol.3. pp.147-161 crossref(new window)