JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Pring Fixed-Strike Lookback Options
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Pring Fixed-Strike Lookback Options
Lee, Hangsuck;
  PDF(new window)
 Abstract
A fixed-strike lookback option is an option whose payoff is determined by the maximum (or minimum) price of the underlying asset within the option`s life. Under the Black-Scholes framework, the time-t price of an equity asset follows a geometric Brownian motion. Applying the method of Esscher transforms, this paper will derive explicit pricing formulas for fixed-strike lookback call and put options, respectively. In addition, this paper will show a relationship (duality property) between the pricing formulas of the call and put options. Finally, this paper will derive explicit pricing formulas for the fixed-strike lookback options when their underlying asset pays dividends continuously at a rate proportional to its price.
 Keywords
Esscher transforms;fixed-strike lookback option;duality property;Brownian motion;
 Language
English
 Cited by
 References
1.
Financial Calculus: An Introduction to Derivative Pricing, 1998.

2.
Applied Mathematical Finance 7, 2000. pp.75-100 crossref(new window)

3.
Asset Pricing, 2001.

4.
Journal of Finance, 1991. vol.46. pp.1893-1907 crossref(new window)

5.
Mathematics of Computation, 1978. vol.32. pp.277-279 crossref(new window)

6.
Mathematics of Computation, 1994. vol.62. pp.289-294 crossref(new window)

7.
Transactions of the Society of Actuaries, 1994. vol.46. pp.99-140

8.
Insurance : Mathematics and Economics, 1996. vol.18. pp.183-218 crossref(new window)

9.
North American Actuarial Journal, 2000. vol.4. 4, pp.164-169

10.
Journal of Finance, 1979. vol.34. pp.1111-1127 crossref(new window)

11.
Brownian Motion and Stochastic Flow Systems, 1985.

12.
The Complete Guide to Option Pricing Formulas, 1998.

13.
Risk, 1994. vol.7. 11, pp.73-76

14.
The Journal of Financial Engineering, 1994. vol.3. 4, pp.253-274

15.
Monte Carlo methods in finance, 2002.

16.
Interduction to Stochastic Calculus Applied to Finance, 1996.

17.
North American Actuarial Journal, 2001. vol.5. 3, pp.133-136

18.
Contingencies January/February, 2002. January;February, pp.34-38

19.
Insurance : Mathematics and Economics, 2003. vol.33. 3, pp.677-690 crossref(new window)

20.
Financial Engineering and Computation, 2002.

21.
Exotic Options : A Guide to Second Generation Options (2nd ed.), 1998.