JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Recovery Levels of Clustering Algorithms Using Different Similarity Measures for Functional Data
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Recovery Levels of Clustering Algorithms Using Different Similarity Measures for Functional Data
Chae, Seong San; Kim, Chansoo; Warde, William D.;
  PDF(new window)
 Abstract
Clustering algorithms with different similarity measures are commonly used to find an optimal clustering or close to original clustering. The recovery level of using Euclidean distance and distances transformed from correlation coefficients is evaluated and compared using Rand`s (1971) C statistic. The C values present how the resultant clustering is close to the original clustering. In simulation study, the recovery level is improved by applying the correlation coefficients between objects. Using the data set from Spellman et al. (1998), the recovery levels with different similarity measures are also presented. In general, the recovery level of true clusters was increased by using the correlation coefficients.
 Keywords
Agglomerative clustering algorithms;Correlation coefficients;Rand′s C statistic;
 Language
English
 Cited by
 References
1.
Bioinformatics, 2003. vol.19. pp.18-824

2.
Journal of the Korean Statistical Society, 1991. vol.20. pp.162-176

3.
Proceeding of National Academy Sciences in USA, 2003. vol.100. pp.9668-9673 crossref(new window)

4.
The Canadian Journal of Statistics, 1979. vol.7. pp.29-38 crossref(new window)

5.
ASA Proceedings of the Social Statistics Section, 1981. pp.309-313

6.
Communications in Statistics, Theory and Method, 1987. vol.16. pp.1433-1460 crossref(new window)

7.
Statistics & Probability Letters, 2004.

8.
Proceeding of National Academy Sciences in USA, 1998. vol.95. pp.14868-14868

9.
Journal of American Statistical Association, 1983. vol.78. pp.553-569 crossref(new window)

10.
Biometrika, 1966. vol.53. pp.325-338 crossref(new window)

11.
Journal of Biological Chemistry, 2002. vol.277. pp.30177-30182 crossref(new window)

12.
Applied Multivariate Statistical Analysis(4th Edition), 1998.

13.
The Korean Communications in Statistics, 2004. vol.10. pp.59-77

14.
Computational Statistics & Data Analysis, 2004. vol.46. pp.269-294 crossref(new window)

15.
Proceeding of National Academy Sciences in USA, 1999. vol.96. pp.9212-9217 crossref(new window)

16.
Journal of the American Statistical in USA, 1971. vol.96. pp.9212-9217

17.
Molecular Biology of the Cell, 1998. vol.9. pp.3273-3297 crossref(new window)

18.
Journal of Pathology, 2001. vol.195. pp.53-65 crossref(new window)