JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Principles of Multivariate Data Visualization
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Principles of Multivariate Data Visualization
Huh, Moon Yul; Cha, Woon Ock;
  PDF(new window)
 Abstract
Data visualization is the automation process and the discovery process to data sets in an effort to discover underlying information from the data. It provides rich visual depictions of the data. It has distinct advantages over traditional data analysis techniques such as exploring the structure of large scale data set both in the sense of number of observations and the number of variables by allowing great interaction with the data and end-user. We discuss the principles of data visualization and evaluate the characteristics of various tools of visualization according to these principles.
 Keywords
visualization;MDL principle;line mosaic plot;
 Language
English
 Cited by
 References
1.
Blake, C .L. & Merz, C. J (1998). UCI Repository of machine learning databases, Department of Information and Computer Science, University of California, Irvine, CA (http://www.ics.uci.edurmlearn/MLRepository.htmI)

2.
Catarci, T., $\'{D}$Amore, F., Janecek, P., Spaccapietra, S., Interacting with GIS: from paper cartography to virtual environments Unesco Encyclopedia on man-machine Interfaces, Advanced Geographic Information Systems, Unesco Press (in Press). available as a pdf file at http://hcLepfl.ch/website/publications/200l/EOLSS -with_images.pdf

3.
Cleveland, W. S. and McGill, R. (1985). Graphical Perception and Graphical Methods for Analyzing Scientific Data. Science, 229, 828-833 crossref(new window)

4.
Cleveland, W. S. (1993). Visualizing Data. AT&T Bell Lab, Murray Hill

5.
Dawson, R. J. (1995). http://ssi.umh.ac.be/titanic.html

6.
Friendly, Michael (1994). Mosaic Displays for Multi-Way Contingency Tables, Journal of the American Statistical Association, 89, 190-200 crossref(new window)

7.
Friendly, Michael (1999). Extending Mosaic Displays: Marginal, Partial, and Conditional Views of Categorical Data, Journal of Computational and Graphical Statistics, 8, 373-395 crossref(new window)

8.
Grinstein, G. G. and Ward, M. (2002). Introduction to data Visualization in Iriformation Visualization in Data Mining and Knowledge Discovery edited by Fayyad, u., Grinstein, G. G. and Wierse, A., Morgan Kaufmann publishers

9.
Huh, M. Y. and Song, K. R. (2002). DAVIS: A Java-based data visualization system, Computational Statistics, 17(3), 411-423

10.
Huh, M. Y. (2004). Line Mosaic Plot: Algorithm and Implementation, invited paper, COMPSTAT 4, Prague, Chech

11.
McLeod, A. I. & Provost, S. B. (2001). Multivariate Data Visualization, Encyclopedia of Environmetrics, 1333-1344, Edited by Abdel El-shaarawi and Walter Piegorsch, New York, Wiley

12.
Nicholas, C. J. (1999). The Emergence of Data Visualization and Prospects for its Business Applications, Masters of Information systems Management Professional Seminar

13.
Steven, S. S. (1975). Psychophysics : Introduction to its Perceptual, Neural, and Social Prospects. New York: Wiley