JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Suppression and Collapsibility for Log-linear Models
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Suppression and Collapsibility for Log-linear Models
Sun, Hong-Chong;
  PDF(new window)
 Abstract
Relationship between the partial likelihood ratio statistics for logisitic models and the partial goodness-of-fit statistics for corresponding log-linear models is discussed. This paper shows how definitions of suppression in logistic model can be adapted for log-linear model and how they are related to confounding in terms of collapsibility for categorical data. Several contingency tables are illustrated.
 Keywords
Confounding;Goodness-of-fit statistic;Logistic;Likelihood ratio statistic;Suppressor variable;
 Language
Korean
 Cited by
1.
로지스틱 회귀모형에서의 SUPPRESSION,홍종선;김호일;함주형;

응용통계연구, 2005. vol.18. 3, pp.701-712 crossref(new window)
2.
Collapsibility and Suppression for Cumulative Logistic Model,;;

Communications for Statistical Applications and Methods, 2005. vol.12. 2, pp.313-322 crossref(new window)
 References
1.
Agresti, Alan.(1984). Analysis of Ordinary Categoriml Data, New York: John .Wiley and Sons

2.
Bishop, Yvonne M. M., Fienberg, Steve E. and Holland, Paul W.(1975). Discrete Multivariate Analysis, Cambridge, Massachusetts: MIT Press

3.
Boivin, J-F. and Wacholder, S.(1975). Conditions for Confounding of the Risk Ratio and of the Odds Ratio, Amerimn Journal of the Epidemiology, Vol. 121, pp. 152-158

4.
Christensen, Ronaldo'(1990). Log-Linear Models, New York: Springer-Verlag

5.
Ducharme, G. R. and Lepage, Y.(1986). Testing Collapsibility in Contingency Tables, Journal of the Royal Statistical Society, B, 48(2), 197-205

6.
Freund, R. J.(1988). When is $R^2>r^2_{yx1}+r^2_{yx2}$?(Revisited), The Amerimn Statistician, Vol. 42, pp. 89-90

7.
Geng, Z.(1992). Collapsibility of Relative Risk in Contingency Tables with a Response Variable, Journal of the Royal Statistical Society, B, 54(2), 585-593

8.
Grayson, D. A.(1987). Confounding Confounding, American Journal of Epidemiology, Vol. 126, pp. 546-553

9.
Hamilton, D.(1987). Sometimes $R^2>r^2_{yx1}+r^2_{yx2}$ Correlated Variables are not Always Redundant, The Amerimn Statistician, Vol. 41, pp. 129-132 crossref(new window)

10.
Hamilton, D.(1988). (Reply to Freund and Mitra), The Amerimn Statistician, Vol. 42, pp. 90-91

11.
Horst, P. (1941). The Role of Prediction Variables Which are Independent of the Criterion, in The Prediction Adjustment, ed. P. Horst, New York: Social Science Research Council, pp. 431-736

12.
Kleinbaum, D. G., Kupper, L. L. and Morgenstern, H.(1941). Epidemiologic Research: Principles and Quantitative Methods, California: Lifetime Learning Publications

13.
Lynn, H. S.(2003). Suppression and Confounding in Action, The Amerimn Statistician, Vol. 57, pp. 58-61 crossref(new window)

14.
Mitra, S.(1988). The Relationship Between the Multiple and the Zero-Order Correlation Coefficients, The Amerimn Statistician, Vol. 42, pp. 89

15.
Schey, H. M(1993).The Relationship Between the Magnitudes of SSR $(x_2)$and SSR(X2 I Xl) : A Geometric Description, The Amerimn Statistician, Vol. 47, pp. 26-30 crossref(new window)

16.
Sharpe, N. R. and Roberts, R. A.(1997). The Relationship Among Sums of Squares, Correlation Coefficients, and Suppression, The Amerimn Statistician, Vol. 51, pp. 46-48 crossref(new window)

17.
Whittemore, A. S.(1978). Collapsibility of Multidimensional Contingency Tables, Journal of the Royal Statistiml Society, B, 40(3), 328-340