JOURNAL BROWSE
Search
Advanced SearchSearch Tips
The Limit Distribution of an Invariant Test Statistic for Multivariate Normality
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
The Limit Distribution of an Invariant Test Statistic for Multivariate Normality
Kim Namhyun;
  PDF(new window)
 Abstract
Testing for normality has always been an important part of statistical methodology. In this paper a test statistic for multivariate normality is proposed. The underlying idea is to investigate all the possible linear combinations that reduce to the standard normal distribution under the null hypothesis and compare the order statistics of them with the theoretical normal quantiles. The suggested statistic is invariant with respect to nonsingular matrix multiplication and vector addition. We show that the limit distribution of an approximation to the suggested statistic is representable as the supremum over an index set of the integral of a suitable Gaussian process.
 Keywords
multivariate normality;goodness-of-fit tests;Gaussian process;Brownian bridge;quantile process;
 Language
English
 Cited by
1.
EDF 통계량을 이용한 다변량 정규성검정,김남현;

응용통계연구, 2006. vol.19. 2, pp.241-256 crossref(new window)
2.
Tests Based on Skewness and Kurtosis for Multivariate Normality,;

Communications for Statistical Applications and Methods, 2015. vol.22. 4, pp.361-375 crossref(new window)
1.
Tests Based on Skewness and Kurtosis for Multivariate Normality, Communications for Statistical Applications and Methods, 2015, 22, 4, 361  crossref(new windwow)
 References
1.
Adler, R. J. (1990). An introduction to continuity, extrema, and related topics for general Gaussian processes, Lecture notes 12, Institute of Mathematical Statistics

2.
Baringhaus, L., and Henze, N. (1988). A consistent test for multivariate normality based on the empirical characteristic function, Metrika, Vol. 35, 339-348 crossref(new window)

3.
Baringhaus, L., and Henze, N. (1992). Limit distribution for Mardia's measure of multivariate skewness, The Annals of Statistics, Vol. 20, 1889-1902 crossref(new window)

4.
Billingsley, P. (968). Convergence of Probability Measures, John Wiley, New York

5.
Csorg o, M. (1983). Quantile processes with statistical applications, CBMS-NSF regional conference series in applied mathematics

6.
Csorg o, S. (1989). Consistency of some tests for multivariate normality, Metrika, Vol. 36, 107-116 crossref(new window)

7.
Csorg o, M., and Revesz, P. (1981). Strong approximations in probability and statistics, Academic Press, New York

8.
D' Agositno, R. B., and Stephens, M. A. (1986). Goodness-of-fit Techniques, Marcel Dekker, New York

9.
del Barrio, E., Cuesta, J. A., Matran, C., and Rodriguez, J. M. (1999). Tests of goodness of fit based on the $L_2-Wasserstein$ distance, The Annals oj Statistics, Vol. 27, 1230-1239 crossref(new window)

10.
de Wet, T., and Venter, J. H. (1972). Asymptotic distributions of certain test criteria of normality, South African Statistical Journal, Vol. 6, 135-149

11.
de Wet, T., Venter, J. H., and van Wyk, J. W. J. (1979). The null distributions of some test criteria of multivariate normality, South African Statistical Journal, Vol. 13, 153-176

12.
Epps, T. W., and Pulley, I. B. (1983). A test for normality based on the empirical characteristic function, Biometrika, Vol. 70, 723-726 crossref(new window)

13.
Fattorini, L. (1986). Remarks on the use of the Shapiro-Wilk statistic for testing multivariate normality, Statistica, Vol. 46, 209-217

14.
Finney, R. L., and Thomas, G. B, Jr. (1994). Calculus, Addison-Wesley

15.
Henze, N. (2002). Invariant tests for multivariate normality: A critical review, Statistical Papers, Vol. 43, 467-506 crossref(new window)

16.
Henze, N., and Wagner, T. (1997). A new approach to the BHEP tests for multivariate normality, Journal of Multivariate Analysis, Vol. 62, 1-23 crossref(new window)

17.
Henze, N., and Zirkler, H. (1990). A class of invariant and consistent tests for multivariate normality, Communications in Statistics -Theory and Methods, Vol. 19, 3539-3617 crossref(new window)

18.
Horswell, R. L., and Looney, S. W. (1992). A comparison of tests for multivariate normality that are based on measures of multivariate skewness and kurtosis, Journal of Statistical Computation and Simulation, Vol. 42, 21-38 crossref(new window)

19.
Kim, N. (1994). Goodness of fit tests for bivariate distributions, Ph. D. dissertation, University of California, Berkeley

20.
Kim, N. (2004). An approximate Shapiro-Wilk statistic for testing multivariate normality, The Korean Journal of Applied statistics, Vol. 17, 35-37 crossref(new window)

21.
Kim, N., and Bickel, P. J (2003). The limit distribution of a test statistic for bivariate normality, Statistica Sinica, Vol. 13, 327-349

22.
Leslie, J. R., Stephens, M. A., and Fotopolous, S. (1986). Asymptotic distribution of the Shapiro-Wilk W for testing for normality, The Annals of Statistics, Vol. 14, 1497-1506 crossref(new window)

23.
Liang, J., Li, R., Fang, H., and Fang, K.-T. (2000). Testing multinormality based on low-dimensional projection, Journal Statistical planning and Inference, Vol. 86, 129-141 crossref(new window)

24.
Machado, S. G. (1983). Two statistics for testing for multivariate normality, Biometrika, Vol. 70, 713-718 crossref(new window)

25.
Malkovich, J. F., and Afifi, A. A. (1973). On tests for multivariate normality, Journal of the American Statistical Association, Vol. 68, 176-179 crossref(new window)

26.
Mardia, K. V. (1970). Measures of multivariate skewness and kurtosis with applications, Biometrika, Vol. 57, 519-530 crossref(new window)

27.
Mardia, K. V. (1974). Applications of some measures of multivariate skewness and kurtosis for testing normality and robustness studies, Sankhya A, Vol. 36, 115-128

28.
Mardia, K. V. (1975). Assessment of multinormality and the robustness of Hotelling's $T^2$ test, Applied Statistics, Vol. 24, 163-171 crossref(new window)

29.
Massart, P. (1989). Strong approximation for multivarite empirical and related processes, via KMT constructions, The Annals of probability, Vol. 17, 266-291 crossref(new window)

30.
Romeu, J. L., and Ozturk, A. (1993). A comparative study of goodness-of-fit tests for multivariate normality, Journal of Multivariate analysis, Vol. 46, 309-334 crossref(new window)

31.
Roy, S. N. (1953). On a heuristic method of test construction and its use in multivariate analysis, Annals of Mathematical Statistics, Vol. 24, 220-238 crossref(new window)

32.
Shapiro, S. S., and Wilk, M. B. (1965). An analysis of variance test for normality (complete samples), Biometrika, Vol. 52, 591-611 crossref(new window)

33.
Thode, Jr. H. C. (2002). Testing for Normality. Marcel Dekker, New York

34.
Zhu, L., Fang, K. T., and Bhatti, M. I. (1997). On estimated projection pursuit Crame r-von Mises statistics, Journal of Multivariate Analysis, Vol. 63, 1-14 crossref(new window)

35.
Zhu, L., Wong, H. L., and Fang, K. (1995). A test for multivariate normality based on sample entropy and projection pursuit, Journal of Statistical Planning and Inference, Vol. 45, 373-385 crossref(new window)