JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Convergence in Probability for Weighted Sums of Fuzzy Random Variables
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Convergence in Probability for Weighted Sums of Fuzzy Random Variables
Joo, Sang-Yeol; Hyun, Young-Nam;
  PDF(new window)
 Abstract
In this paper, we give a sufficient condition for convergence in probability of weighted sums of convex-compactly uniformly integrable fuzzy random variables. As a result, we obtain weak law of large numbers for weighted sums of convexly tight fuzzy random variables.
 Keywords
Fuzzy random variables;Convergence in probability;Tightness;Weighted sums;
 Language
English
 Cited by
1.
Weak Laws of Large Numbers for Weighted Sums of Fuzzy Random Variables,;;;;

Communications for Statistical Applications and Methods, 2009. vol.16. 3, pp.529-540 crossref(new window)
 References
1.
Goetschel, R. and Voxman, W.(1986). Elementary fuzzy calculus, Fuzzy Sets and Systems, Vol. 18, 31-43 crossref(new window)

2.
Guan L. and Li, S.(2004). Laws of large numbers for weighted sums of fuzzy set-valued random variables, International Journal of Uncertainty, Fuzziness and Knowledge Based Systems, Vol. 12, 811-825 crossref(new window)

3.
Inoue, H.(1991) A strong law of large numbers for fuzzy random sets, Fuzzy Sets and Systems, Vol. 41, 285-291 crossref(new window)

4.
Joo, S. Y.(2002). Strong law of large numbers for tight fuzzy random variables, Journal of the Korean Statistical Society, Vol. 31, 129-140

5.
Joo, S. Y.(2004). Weak law of large numbers for fuzzy random variables, Fuzzy Sets and Systems, Vol. 147, 453-464 crossref(new window)

6.
Joo, S. Y. and Kim, Y. K.(2000). The Skorokhod topology on space of fuzzy numbers, Fuzzy sets and Systems, Vol. 111, 497-501 crossref(new window)

7.
Joo, S. Y. and Kim, Y. K. and Kwon, J. S.(to appear). Strong convergence for weighted sums of fuzzy random sets, Information Sciences

8.
Kim, Y. K.(2001). Compactness and convexity on the space of fuzzy sets, Journal of Mathematical Analysis and Applications, Vol. 264, 122-132 crossref(new window)

9.
Kim, Y. K.(2004). Compactness and convexity on the space of fuzzy sets II, Nonlinear Analysis. Vol. 57, 639-653 crossref(new window)

10.
Kim, Y. K.(2004). Weak convergence for weighted sums of level-continuous fuzzy random variables, Journal of Fuzzy Logic and Intelligent Systems, Vol. 14, 852-856 crossref(new window)

11.
Klement, E. P. Puri, M. L. and Ralescu, D. A.(1986). Limit theorems for fuzzy random variables, Proc. Roy. Soc. Lond. Ser. A, Vol. 407, 171-182

12.
Molchanov, I.(1999). On strong laws of large numbers for random upper semicontinuous, Journal of Mathematical Analysis and Applications. Vol. 235, 349-355 crossref(new window)

13.
Proske, F. and Puri, M. L.(2002). Strong laws of large numbers for Banach space valued fuzzy random variables, Journal of Theoretical Probability. Vol. 15, 543-551 crossref(new window)

14.
Puri, M. L. and Ralescu, D. A.(1986). Fuzzy random variables, Journal of Mathematical Analysis and Applications. 114 , 402-422

15.
Taylor, R. L. and Inoue, H.(1997). Laws of large numbers for random sets, Random sets: Theory and Applications, IMA Vol. 97, Springer, New York, 347-366

16.
Taylor, R. L. Seymour, L. and Chen, Y.(2001). Weak laws of large numbers for fuzzy random sets, Nonlinear Analysis, Vol. 47, 1245-1256 crossref(new window)

17.
Uemura, T.(1993). A law of large numbers for random sets, Fuzzy Sets and Systems, Vol. 59, 181-188 crossref(new window)