JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Robust Cross Validation Score
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Robust Cross Validation Score
Park, Dong-Ryeon;
  PDF(new window)
 Abstract
Consider the problem of estimating the underlying regression function from a set of noisy data which is contaminated by a long tailed error distribution. There exist several robust smoothing techniques and these are turned out to be very useful to reduce the influence of outlying observations. However, no matter what kind of robust smoother we use, we should choose the smoothing parameter and relatively less attention has been made for the robust bandwidth selection method. In this paper, we adopt the idea of robust location parameter estimation technique and propose the robust cross validation score functions.
 Keywords
Cross validation;Local regression;Location parameter estimators;Robust regression;
 Language
English
 Cited by
1.
ROBUST CROSS VALIDATIONS IN RIDGE REGRESSION,;

Journal of applied mathematics & informatics, 2009. vol.27. 3_4, pp.903-908
 References
1.
Bowman, A. (1984), An alternative method of cross-validation for the smoothing of density estimates, Biometrika, 71, 353-360 crossref(new window)

2.
Cantoni, E. and Ronchetti, E. (2001), Resistant selection of the smoothing parameter for smoothing splines, Statistics and Computing, 11, 141-146 crossref(new window)

3.
Cleveland, W. (1979), Robust locally weighted regression and smoothing scatterplots, Journal of the American Statistical Association, 74, 829-836 crossref(new window)

4.
Fan, J. (1992),. Design-adaptive nonparametric regression, Journal of the American Statistical Association, 87, 998-1004 crossref(new window)

5.
Fan, J. (1993), Local linear regression smoothers and their minimax efficiency, The Annals of Statistics, 21, 196-216 crossref(new window)

6.
Fan, J. and Gijbels, I. (1992), Variable bandwidth and local linear regression smoothers, The Annals of Statistics, 20, 2008-2036 crossref(new window)

7.
Fan, J. and Gijbels, I. (1995), Data-driven bandwidth selection in local polynomial fitting: variable bandwidth and spatial adaptation. Journal of Royal Statistical Society, Series B, 57, 371-394

8.
Fan, J. and Gijbels, I. (1996), Local Polynomial Modelling and Its Applications, Chapman & Hall, London

9.
Gasser, T. and Muller, H. (1979), Kernel estimation of regression functions. In Smoothing Techniques for Curve Estimation, Lecture Notes in Mathematics, 757, 23-68, Springer-Verlag, New York

10.
Hoaglin, D., Mosteller, F. and Tukey, J. (1983), Understanding Robust and Exploratory Data Analysis, John Wiley & Sons, New York

11.
Jones, M., Marron, J. and Sheather, S. (1996), A brief survey of bandwidth selection for density estimation, Journal of the American Statistical Association, 91, 401-407 crossref(new window)

12.
Loader, C. (1999a), Bandwidth selection: classical or plug-in?, The Annals of Statistics, 27, 415-438

13.
Loader, C. (1999b), Local Regression and Likelihood, Spring-Verlag, New York

14.
Park, D. (2004), Robustness weight by weighted median distance, Computational Statistics, 19, 367-383

15.
Rice, J. (1984), Bandwidth choice for nonparametric regression, The Annals of Statistics, 12, 1215-1230 crossref(new window)

16.
Rousseeuw, P. and Leroy, A. (1987), Robust Regression and Outlier Detection, John Wiley & Sons, New York

17.
Ruppert, D. and Wand, M. (1994), Multivariate locally weighted least squares regression, The Annals of Statistics, 22, 1346-1370 crossref(new window)

18.
Wand, M. and Jones, M. (1995), Kernel Smoothing, Chapman & Hall, London

19.
Wang, F. and Scott, D. (1994), The $L_1$ method for robust nonparametric regression, Journal of the American Statistical Association, 89, 249-260