JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Bootstrap Method for Row and Column Effects Model
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Bootstrap Method for Row and Column Effects Model
Jeong, Hyeong-Chul;
  PDF(new window)
 Abstract
In this paper, we consider a bootstrap method to the 'row and column effects model' (RC model) to analyze a contingency table with ordered variables. We propose a bootstrap procedure for testing of independence, equality of intervals, and goodness of fit in the RC model. A real data example is included.
 Keywords
Bootstrap;RC model;Independence test;Equality of interval test;Goodness of fit test;
 Language
English
 Cited by
 References
1.
Agresti, A. (1984) Analysis of Ordinal Categorical Data. New York : John Wiley & Sons

2.
Agresti, A. (1990) Categorical Data Analysis. New York: John Wiley & Sons

3.
Davis, C. S. (1988) Estimation of row and column scores in the linear-by-linear association model for two-way ordinal contingency tables. Proceeding 13th Annual SAS Users Group International Conference, 946-951

4.
Evans, M., Gilula, Z., Guttman, I., and Swartz, T. (1997) Bayesian analysis of stochastically ordered distributions of categorical variables. Journal of the American Statistical Association, 92, 208-214 crossref(new window)

5.
Gilula, Z. (1986) Grouping and association in two-way contingency table: A canonical correlation analytic approach. Journal of the American Statistical Association, 81, 773-779 crossref(new window)

6.
Gilula, Z. and Ritov, Y. (1990) Inferential ordinal correspondence analysis : motivation, derivation and limitations. International Statistical Review, 58, 99-108 crossref(new window)

7.
Goodman, L. A. (1979) Simple models for the analysis of association in cross classifications having ordered categories. Journal of the American Statistical Association, 74, 537-552 crossref(new window)

8.
Goodman, L. A. (1981a) Association models and canonical correlation in the analysis of cross classifications having ordered categories. Journal of the American Statistical Association, 76, 320-334 crossref(new window)

9.
Goodman, L. A. (1981b) Associations models and the bivariate normal for contingency tables with ordered categories. Biometrika, 68, 347-355 crossref(new window)

10.
Goodman, L. A. (1986) Some useful extensions of the usual correspondence analysis approach and the usual log-linear models approach in the analysis of contingency tables. International Statistical Review, 54, 243-309 crossref(new window)

11.
Haberman, S. J. (1981) Tests for independence in two-way contingency tables based on canonical correlations and on linear-by-linear interaction. The Annals of Statistics, 9, 1178-1186 crossref(new window)

12.
Jeong, H.C., Jhun, M., and Kim D. (2005) Bootstrap tests for independence in two-way ordinal contingency tables, Computational statistics & Data Analysis, 48, 623-631 crossref(new window)

13.
Srole, L., Langner, T. S., Michael, S. T., Opler, M. K., and Rennie, T. A. C. (1962). Mental Health in the Metropolis : The Midtown Manhattan Study, New York: McGraw- Hill