JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Regression Quantiles Under Censoring and Truncation
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Regression Quantiles Under Censoring and Truncation
Park, Jin-Ho; Kim, Jin-Mi;
  PDF(new window)
 Abstract
In this paper we propose an estimation method for regression quantiles with left-truncated and right-censored data. The estimation procedure is based on the weight determined by the Kaplan-Meier estimate of the distribution of the response. We show how the proposed regression quantile estimators perform through analyses of Stanford heart transplant data and AIDS incubation data. We also investigate the effect of censoring on regression quantiles through simulation study.
 Keywords
censoring;regression quantile;Kaplan-Meier estimate;
 Language
English
 Cited by
 References
1.
Buchinsky, M. (1995). Estimating the asymptotic covariance matrix for quantile regression models, J. Ecometrics, Vol. 68, 303-338

2.
Buchinsky, M. and Hahn, J, (1998). An alternative estimator for the censored quantile regression model, Econometrica, Vol. 66, 653-671 crossref(new window)

3.
Buckley, J, and James, I. (1979). Linear regression with censored data, Biometrika, Vol. 66, 429-464 crossref(new window)

4.
Chen, S. and Khan, S. (2001). Estimation of a partially linear censored regression model, Econometrics Theory, Vol. 17, 567-590 crossref(new window)

5.
Cox, D.R. (1972). Regression models and life-tables (with discussion), J. Roy. Statist. Soc. Ser. B, Vol. 34, 187-220

6.
Gross, S.T. and Lai, T.L. (1996). Nonparametric estimation and regression analysis with left-truncated and right-censored data, J. Amer. Statist. Assoc., Vol. 91, 1166-1180 crossref(new window)

7.
Honore, B., Khan, S. and Powell, J.L. (2002). Quantile regression under random censoring, J. Ecometrics, Vol. 109, 67-105

8.
Kalbfleisch, J,D. and Lawless, J.F. (1989). Inference based on retrospective ascertainment: An analysis of the data on transfusion-related AIDS, J. Amer. Statist. Assoc., Vol. 84, 360-372 crossref(new window)

9.
Koenker, R. and Basset, G. (1978). Regression quantiles, Econometrica, Vol. 46, 33-50 crossref(new window)

10.
Koenker, R. and Park, B.J, (1996). An interior point algorithm for nonlinear quantile regression. J. Ecometrics, Vol. 71, 265-283

11.
Lai, T.L. and Ying, Z. (1991). Estimating a distribution function with truncated and censored data, Ann Statist., Vol. 19, 417-442 crossref(new window)

12.
Leurgans, S. (1987). Linear models, random censoring and synthetic data, Biometrika, Vol. 74, 301-309 crossref(new window)

13.
Lindgren, A. (1997). Quantile regression with censored data using generalized$L_1$ minimization, Comput. Statist. Data Anal., Vol. 23, 509-524 crossref(new window)

14.
Miller, R.G. (1976). Least squares regression with censored data, Biometrika, Vol. 63, 449-464 crossref(new window)

15.
Newey, W.K. and Powell, J.L. (1990). Efficient estimation of linear and type I censored regression models under conditional quantile restrictions, Econometrics Theory, Vol. 6, 295-317 crossref(new window)

16.
Park, J. and Hwang, J. (2003). Regression depth with censored and truncated data, Comm. Statist., Vol. 32, 997-1008 crossref(new window)

17.
Powell, J. (1984). Least absolute deviations estimation for the censored regression model, J. Ecometrics, Vol. 25, 303-325

18.
Powell, J.(1986). Censored Regression Quantiles, J. Ecometrics, Vol. 32, 143-155

19.
Portnoy, S. (2003). Censored regression quantiles, J. Amer. Statist. Assoc., Vol. 98, 1001-2003 crossref(new window)

20.
Tobin, J. (1958). Estimation of relationships for limited dependent variables, Econometrica, Vol. 26, 24-36 crossref(new window)

21.
Ying, Z., Jung, S.H. and Wei, L.J, (1995). Survival analysis with median regression models, J. Amer. Statist. Assoc., Vol. 90, 178-184 crossref(new window)

22.
Zhou, M. (1992). M-estimation in censored linear models, Biometrika, Vol. 79, 837-841 crossref(new window)