JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Monotone Local Linear Quasi-Likelihood Response Curve Estimates
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Monotone Local Linear Quasi-Likelihood Response Curve Estimates
Park, Dong-Ryeon;
  PDF(new window)
 Abstract
In bioassay, the response curve is usually assumed monotone increasing, but its exact form is unknown, so it is very difficult to select the proper functional form for the parametric model. Therefore, we should probably use the nonparametric regression model rather than the parametric model unless we have at least the partial information about the true response curve. However, it is well known that the nonparametric regression estimate is not necessarily monotone. Therefore the monotonizing transformation technique is of course required. In this paper, we compare the finite sample properties of the monotone transformation methods which can be applied to the local linear quasi-likelihood response curve estimate.
 Keywords
Local linear quasi-likelihood estimate;Monotone nonparametric estimate;Response curve;
 Language
English
 Cited by
 References
1.
Copas, J. (1983). Plotting p against x. Applied Statistics, Vol. 32, 25-31 crossref(new window)

2.
Dette, H., Neumeyer, N., and Pilz, K. (2003). A simple non-parametric estimator of a monotone regression function. Technical report, University of Bochum, Dept. Mathematics, Available from : http://www.ruhr-uni-bochum.de/mathematik3/preprint.htm

3.
Dette, H., Neumeyer, N., and Pilz, K. (2005). A note on nonparametric estimation of the effective dose in quantal bioassay. The Journal of the American Statistical Association, Vol. 100, 503-510 crossref(new window)

4.
Dette, H. and Pilz, K. (2004). A comparative study of monotone nonparametric kernel estimates. Technical report, University of Bochum, Department of Mathematics, Available from: http://www.ruhr-uni-bochum.de/mathemat ik3/preprint.htm

5.
Fan, J. (1992). Design-adaptive nonparametric regression. The Journal of the American Statistical Association, Vol. 87, 998-1004 crossref(new window)

6.
Fan, J., Heckman, N., and Wand, M. (1995). Local polynomial kernel regression for generalized linear models and quasi -likelihood functions. The Journal of the American Statistical Association, Vol. 90, 141-150 crossref(new window)

7.
Friedman, J. and Tibshirani, R. (1984). The monotone smoothing of scatterplots. Technometrics, Vol. 26, 243-250 crossref(new window)

8.
Kappenman, R. (1987). Nonparametric estimation of dose-response curves with application to ED50 estimation. The Journal of Statistical Computation and Simulation, Vol. 28, 1-13

9.
Loader, C. (1999). Local Regression and Likelihood, Springer-Verlag, New York

10.
Mammen, E. (1991). Estimating a smooth monotone regression function. The Annals of Statistics, Vol. 19, 724-740 crossref(new window)

11.
Mukerjee, H. (1988). Monotone nonparametric regression. The Annals of Statistics, Vol. 16, 741-750 crossref(new window)

12.
Muller, H. and Schmitt, T. (1988). Kernel and probit estimates in quantal bioassay. The Journal of the American Statistical Association, Vol. 83, 750-759 crossref(new window)

13.
Park, D. (1999). Comparison of two response curve estimators. Journal of Statistical Computation and Simulation, Vol. 62, 259-269 crossref(new window)

14.
Park, D. and Park, S. (2006). Parametric and nonparametric estimators of ED100a. Journal of Statistical Computation and Simulation, Vol. 76, 661-672 crossref(new window)