JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Test for the Exponential Distribution Based on Multiply Type-II Censored Samples
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Test for the Exponential Distribution Based on Multiply Type-II Censored Samples
Kang, Suk-Bok; Lee, Sang-Ki;
  PDF(new window)
 Abstract
In this paper, we develope three modified empirical distribution function type tests, the modified Cramer-von Mises test, the modified Anderson-Darling test, and the modified Kolmogorov-Smirnov test for the two-parameter exponential distribution with unknown parameters based on multiply Type-II censored samples. For each test, Monte Carlo techniques are used to generate the critical values. The powers of these tests are also investigated under several alternative distributions.
 Keywords
Anderson-Darling test;approximate maximum likelihood estimator;Clamor-von Mises test;exponential distribution;Kolmogorov-Smirnov test;multiply Type-II censored sample;
 Language
English
 Cited by
1.
Goodness-of-fit Test for the Weibull Distribution Based on Multiply Type-II Censored Samples,;;

Communications for Statistical Applications and Methods, 2009. vol.16. 2, pp.349-361 crossref(new window)
2.
Goodness-of-fit test for the half logistic distribution based on multiply Type-II censored samples,;;;;

Journal of the Korean Data and Information Science Society, 2010. vol.21. 2, pp.317-325
3.
Goodness-of-fit test for the logistic distribution based on multiply type-II censored samples,;;;

Journal of the Korean Data and Information Science Society, 2014. vol.25. 1, pp.195-209 crossref(new window)
4.
Goodness-of-fit tests for the inverse Weibull or extreme value distribution based on multiply type-II censored samples,;;;;

Journal of the Korean Data and Information Science Society, 2014. vol.25. 4, pp.903-914 crossref(new window)
1.
Goodness-of-fit test for the logistic distribution based on multiply type-II censored samples, Journal of the Korean Data and Information Science Society, 2014, 25, 1, 195  crossref(new windwow)
2.
Goodness-of-fit tests for the inverse Weibull or extreme value distribution based on multiply type-II censored samples, Journal of the Korean Data and Information Science Society, 2014, 25, 4, 903  crossref(new windwow)
 References
1.
Balakrishnan, N. (1989). Approximate MLE of the scale parameter of the Rayleigh distribution with censoring. IEEE Transactions on Reliability, Vol. 38, 355-357 crossref(new window)

2.
Balasubramanian, K. and Balakrishnan, N. (1992). Estimation for one-parameter and two-parameter exponential distributions under multiple Type-Il censoring. Statistische Hefte, Vol. 33, 203-216

3.
Kang, S. B. (2003). Approximate MLEs for exponential distribution under multiple Type-Il censoring. Journal of the Korean Data & Information Science Society, Vol. 14, 983-988

4.
Kang, S. B. and Lee, S. K. (2005). AMLEs for the exponential distribution based on multiple Type-II censored samples. The Korean Communications in Statistics, Vol. 12, 603-613 crossref(new window)

5.
Lin, C.T. and Balakrishnan, N. (2003). Exact prediction intervals for exponential distributions based on doubly Type-Il censored samples. Journal of Applied Statistics, Vol. 30, 783-801 crossref(new window)

6.
Pettitt, A.N. (1976). Cramer-von Mises statistics for testing normality with censored samples. Biometrika, Vol. 63, 475-481

7.
Pettitt, A.N. and Stephens, M.A. (1976). Modified Cramer-von Mises statistics for censored data. Biometrika, Vol. 63, 291-298

8.
Porter III, J.E, Coleman, J.W., and Moore, A.H. (1992). Modified KS, AD, and C-vM tests for the Pareto distribution with unknown location & scale parameters. IEEE Transaction on Reliability, Vol. 41, 112-117 crossref(new window)

9.
Puig, P. and Stephens, M.A. (2000). Tests of fit for the Laplace distribution with applications. Technometrics, Vol. 42, 417-424 crossref(new window)

10.
Upadhyay, S.K., Singh, U., and Shastri, V. (1996). Estimation of exponential parameters under multiply Type-Il censoring. Communications in Statistics- Simulation and Computation, Vol. 25, 801-815 crossref(new window)